Klasterisasi Pahlawan Nasional Indonesia Berdasarkan Daerah Asal Menggunakan Algoritma Community Detection

Luh Putu Gayatri Widiastuti, Nida Inayah Maghfirani, Nur Aini Rakhmawati

Abstract


Abstrak

Kisah sejarah sampai kemerdekaan Indonesia tak pernah lepas dari kurikulum pendidikan wajib belajar 12 tahun. Namun seiring dengan perkembangan zaman, hipotesis-hipotesis sejarah Indonesia juga ikut berkembang. hipotesis-hipotesis juga membantu sejarawan untuk melihat sejarah Indonesia menjadi lebih utuh. Untuk mendukung perkembangan tersebut, penulis mencoba mengimplementasikan algoritma Community Detection untuk mencari keterkaitan antar pahlawan nasional. Sumber data pahlawan nasional yang digunakan pada penelitian ini adalah id.dbpedia. Namun akibat inkonsistensi dan sedikitnya data yang disimpan di id.dbpedia, maka pengumpulan data tidak berhenti di id.dbpedia saja. Salah satu sumber data yang jumlah datanya lebih banyak dari id.dbpedia adalah Wikipedia. Data yang diperoleh kemudian dilakukan standarisasi secara manual, dan dibuatkan graf di Jupyter. Algoritma Community Detection digunakan untuk menemukan klaster-klaster komunitas pahlawan nasional Indonesia berdasarkan data daerah dan tahun. Community Detection menunjukkan bahwa data yang diolah dengan menggunakan Algoritma Greedy Modularity memiliki 16 komunitas atau kelompok. Selain itu, sebuah pola ditemukan pada 6 komunitas yang ada berdasarkan Algoritma Girvan Newman Sehingga dapat disimpulkan bahwa Algoritma Greedy Modularity menghasilkan lebih banyak klasifikasi komunitas.

Kata Kunci: algoritma,  klasterisasi, deteksi komunitas, pahlawan nasional indonesia, daerah, tahun

 

Abstract

The story of history Indonesia until Indonesia's independence has never been separated from the 12-year compulsory education curriculum.  However, along with the times, historical hypotheses in Indonesia also developed. Hypotheses also help historians to see Indonesian history more fully. To support this development, the author tries to implement the Community Detection algorithm to find linkages between national heroes. The data source for the national heroes used in this study is id.dbpedia. However, due to inconsistencies and the lack of data stored on id.dbpedia, data collection does not stop at id.dbpedia only. One of the data sources with more data than id.dbpedia is Wikipedia. After the data was obtained, then it standardized manually, and graphs were made in Jupyter. The Community Detection algorithm is used to find clusters of Indonesian national hero communities based on regional and year data Community Detection shows that the data processed using the Greedy Modularity Algorithm generates 16 communities or groups. In addition, a pattern was found in 6 existing communities based on the Newman Girvan Algorithm. So it can be concluded that the Greedy Modularity Algorithm produces more community classifications.

Keywords:  algorithm, clustering, community detection, indonesian national heroes, region, years


Full Text:

PDF

References


M. Tasgin, A. Herdagdelen, and H. Bingol, “Community Detection in Complex Networks Using Genetic Algorithms,” Nov. 2007, Accessed: May 22, 2020. [Online]. Available: http://arxiv.org/abs/0711.0491.

Nurmasyitah, M. T. Imelda Atastina, S. Si, and M. T. Anisa Herdiani, S.T., “Analisis Dan Implementasi Community Detection Menggunakan Spectral Clustering Method Dalam Social Network | Nurmasyitah | eProceedings of Engineering,” e-Proceeding of Engineering, 2018. https://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/6738/6638 (accessed May 22, 2020).

Itsna Alfin Nur, Moch. Arif Bijaksana, and E. D. S. T. . M. T. Ir. M.Tech., “Community Detection Menggunakan Genetic Algorithm Dalam Social Network Twitter | Nur | eProceedings of Engineering,” 2015, Accessed: May 22, 2020. [Online]. Available: https://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/1287/1229.

Lulu Alfi’a Rahma Ningsih, Imelda Atastina, and Anisa Herdiani, “Analisis Dan Implementasi Community Detection Menggunakan Algoritma Dbscan Pada Twitter | Ningsih | eProceedings of Engineering,” 2018. https://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/6154/6133 (accessed May 22, 2020).

A. N. Annisa, “Studi Literatur Perencanaan dan Algoritma Pembentukan DMA (District Metered Area),” 2016.

M. A. Javed, M. S. Younis, S. Latif, J. Qadir, and A. Baig, “Community detection in networks: A multidisciplinary review,” J. Netw. Comput. Appl., 2018.

“SPARQL 1.1 overview.,” World Wide Web Consortium, 2013. https://www.w3.org/TR/sparql11-query/ (accessed May 06, 2020).

N. Akhtar, “Social network analysis tools,” in Proceedings - 2014 4th International Conference on Communication Systems and Network Technologies, CSNT 2014, 2014, pp. 388–392, doi: 10.1109/CSNT.2014.83.

A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using networkx (Conference) | OSTI.GOV,” 2008, Accessed: May 22, 2020. [Online]. Available: https://www.osti.gov/biblio/960616.

P. V. Marsden, “The reliability of network density and composition measures,” Soc. Networks, vol. 15, no. 4, pp. 399–421, Dec. 1993, doi: 10.1016/0378-8733(93)90014-C.

Vinh-Loc Dao, C. Bothorel, and P. Lenca, “Community structure: A comparative evaluation of community detection methods,” vol. hal-019765, 2019.

S. Moon, J. G. Lee, and M. Kang, “Scalable community detection from networks by computing edge betweenness on MapReduce,” in 2014 International Conference on Big Data and Smart Computing, BIGCOMP 2014, 2014, pp. 145–148, doi: 10.1109/BIGCOMP.2014.6741425.

L. Despalatovic, T. Vojkovic, and D. Vukicevic, “Community structure in networks: improving the Girvan-Newman algorithm,” in Conference: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014, pp. 997–1002, doi: 10.1109/MIPRO.2014.6859714.

S. Lobanova and A. Chepovskiy, “Combined method to detect communities in graphs of interacting objects,” Bus. Informatics, vol. 2017, no. 4, pp. 64–73, Dec. 2017, doi: 10.17323/1998-0663.2017.4.64.73.

M. Chen, K. Kuzmin, and B. K. Szymanski, “Community detection via maximization of modularity and its variants,” IEEE Trans. Comput. Soc. Syst., vol. 1, no. 1, pp. 46–65, Mar. 2014, doi: 10.1109/TCSS.2014.2307458.

A. F. Almukhtar and E. S. Al-Shamery, “Greedy Modularity Graph Clustering for Community Detection of Large Co-Authorship Network,” Int. J. Eng. Technol., 2018.

Liyan Dong, Yongli Li, Han Yin, Huang Le, and Mao Rui, “The Algorithm of Link Prediction on Social Network,” Math. Probl. Eng., 2013, Accessed: May 22, 2020. [Online]. Available: https://www.hindawi.com/journals/mpe/2013/125123/.

A. F. Al-Mukhtar and E. S. Al-Shamery, “Greedy Modularity Graph Clustering for Community Detection of Large Co-Authorship Network,” Int. J. Eng. Technol., vol. 7, no. 4.19, p. 857, Nov. 2018, doi: 10.14419/ijet.v7i4.19.28058.

Dbpedia, “http://id.dbpedia.org/page/Kategori:Pahlawan_nasional_Indonesia.” .

N. I. Maghfirani and L. P. G. Widiastuti, “Klasterisasi Pahlawan Nasional Indonesia Berdasarkan Daerah Asal menggunakan Algoritma Louvain,” May 2020, doi: 10.5281/ZENODO.3808974.




DOI: https://doi.org/10.32520/stmsi.v10i1.1068

Article Metrics

Abstract view : 106 times
PDF - 34 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.