Penentuan Penanganan Persalinan Caesar dengan Neural Network dan Particle Swarm Optimization

Insan Cahya Setia, Toni Arifin

Abstract


Abstrak

Persalinan caesar merupakan suatu tindakan operatif pada ibu bersalin dengan melakukan insisi pada kulit, dinding perut dan dinding rahim untuk menyelamatkan ibu serta bayi. Tindakan caesar dilakukan jika sang ibu tidak dapat melahirkan secara normal yang disebabkan oleh suatu indikasi tertentu. Untuk mengurangi resiko persalinan pada ibu dan bayi, perlu dilakukan pemeriksaan kondisi calon pasien caesar, maka dapat dilakukan penerapan dan pemanfaatan teknik data mining guna meminimalisir kesalahan dalam pemeriksaan. Klasifikasi yaitu salah satu poin penting dalam data mining atau pembelajaran mesin. Klasifikasi merupakan suatu pengelompokan data dimana data tersebut memiliki kelas label atau target. Salah satu metode data mining untuk masalah klasifikasi yang bisa implementasikan yaitu Neural Network. Untuk meningkatkan hasil akurasi penelitian, maka dapat digunakan pembobotan atribut menggunakan Particle Swarm Optimization. Pada penelitian yang dilakukan, teknik klasifikasi metode Neural Network dan Particle Swarm Optimization diterapkan pada Caesarian Section Classification Dataset. Setelah penelitian selesai dilakukan, diperoleh hasil akurasi menggunakan Neural Network mencapai 87.50% dengan nilai Area Under Curve (AUC) yaitu 1.000. Kemudian hasil akurasi menggunakan Neural Network berbasis Particle Swarm Optimization mengalami peningkatan sebesar 6.25% dengan akurasi mencapai 93.75% dan Area Under Curve (AUC) yaitu 0.913.

Kata kunci: Bobot, Klasifikasi, Neural Network, Particle Swarn Optimization, Penanganan Caesar

 

            Abstract

Caesarean is an operative action on the mother by giving an incision in the skin, abdominal wall and uterine wall to save the mother and baby. Caesarean section is performed if the mother is unable to give birth normally due to a certain indication. To reduce the risk of childbirth to the mother and baby, it is necessary to examine the condition of prospective caesarean patients, so the application and utilization of data mining techniques can be done to minimize errors in the examination. Classification is one of the important points in data mining or machine learning. Classification is a grouping of data where the data has a label or target class. One of the data mining methods for classification problems that can be implemented is the Neural Network. To improve the results of research accuracy, attribute weighting can be used using Particle Swarm Optimization. In the research conducted, the classification technique of Neural Network method and Particle Swarm Optimization is applied to the Caesarian Section Classification dataset. After the research was completed, the accuracy of using the Neural Network was 87.50% with Area Under Curve (AUC) is 1.000. Then the accuracy of using Neural Network based on Particle Swarm Optimization has increased by 6.25% with an accuracy reaching 93.75% and Area Under Curve (AUC) is 0.913.

Keywords: Caesarian Section Delivery, Classification, Neural Network, Particle Swarn Optimization, Weight.


Full Text:

PDF

References


World Health Organization, “Maternal mortality : level and trends 2000 to 2017,” 2019. [Online]. Available: https://www.who.int/reproductivehealth/publications/maternal-mortality-2000-2017/en/.

A. Pribadi, “Program Akselerasi Penurunan Angka Kematian Ibu POGI Jabar Zero Mother Mortality Preeclampsia (ZOOM),” Indones. J. Obstet. Gynecol. Sci., vol. 1, no. 1, pp. 1–5, 2018, doi: 10.24198/obgynia.v1n1.80.

M. J. Shidiq, S. Rahayu, and F. S. Nugraha, “Klasifikasi Diagnosis Melahirkan Dengan Metode Sesar Menggunakan Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 157–162, 2019, doi: 10.33480/pilar.v15i2.602.

S. Diana, E. Mail, and Z. Rufaida, Buku Ajar Asuh Kebidanan Persalinan Dan Bayu Baru Lahir. Surakarta: CV OASE GROUP, 2019.

N. Sihombing, I. Saptarini, and D. S. K. Putri, “The Determinants of Sectio Caesarea Labor in Indonesia ( Further Analysis of Riskesdas 2013),” J. Kesehat. Reproduksi, vol. 8, no. 1, pp. 63–75, 2017, doi: 10.22435/kespro.v8i1.6641.63-75.

H. Amalia, A. B. Pohan, and S. Masripah, “Penerapan Feature Weighting Optimized Pada Naïve Bayes Untuk Prediksi Proses Persalinan,” J. Pilar Nusa Mandiri, vol. 15, no. 1, pp. 15–20, 2019, doi: 10.33480/pilar.v15i1.3.

S. R. Arman, “Faktor-faktor yang Berhubungan Dengan Pemilihan Metode Persalinan Sectio Caesarea di Rumah Sakit Agung Jakarta Periode November 2016-Oktober 2017,” 2017.

N. R. Shahar, “Analisis Faktor-Faktor Penyebab Proses Persalinan Secara Caesar Menggunakan Algoritma ID3 Dengan Metode Decision Tree,” 2016.

H. Amalia and Evicienna, “Komparasi Metode Data Mining Untuk Penentuan Proses Persalinan Ibu Melahirkan,” J. Sist. Inf., vol. 13, no. 2, p. 103, 2017, doi: 10.21609/jsi.v13i2.545.

Y. Ramdhani, S. Susanti, M. F. Adiwisastra, and S. Topiq, “Penerapan Algoritma Neural Network Untuk Klasifikasi Kardiotokografi,” J. Inform., vol. 5, no. 1, pp. 43–49, 2018, doi: 10.31311/ji.v5i1.2832.

R. Sanjaya and D. Puspitasari, “Noise Reduction through Bagging on Neural Network Algorithm for Forest Fire Estimates,” 2018 6th Int. Conf. Cyber IT Serv. Manag., no. CITSM, pp. 1–5, 2018, doi: 10.1109/CITSM.2018.8674287.

A. Herliana, T. Arifin, S. Susanti, and A. B. Hikmah, “Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network,” no. CITSM, pp. 2016–2019, 2018.

M. R. Lubis, “Metode Hybrid Particle Swarm Optimization - Neural Network Backpropagation Untuk Prediksi Hasil Pertandingan Sepak Bola,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, p. 71, 2017, doi: 10.30645/j-sakti.v1i1.30.

M. Ary, “Aplikasi Prediksi Banjir Metode Fuzzy Logic, Hasil Algoritma Spade dam Algoritma PSO,” Konf. Nas. Ilmu Sos. Teknol., pp. 342–348, 2017.

T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,” vol. 13, no. 1, pp. 26–30, 2019.

P. Erdogmus, “Introductory Chapter: Swarm Intelligence and Particle Swarm Optimization,” Intech, p. 9, 2018, doi: 10.1016/j.colsurfa.2011.12.014.

G. Abdurrahman and J. T. Wijaya, “Analisis Klasifikasi Kelahiran Caesar Menggunakan Algoritma Naive Bayes,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 4, no. 2, pp. 46–51, 2019, doi: 10.32528/justindo.v4i2.2616.

K. P. Wicaksono, M. A. Soeleman, and R. A. Pramunendar, “Optimasi Particle Swarn Optimization (PSO) Pada Algoritma Klasifikasi Neural Network (NN) Dalam Penentuan Kelayakan Pemberian Sertifikasi Guru,” vol. 14, pp. 49–59, 2018.

T. Hidayatulloh, A. Herliana, and T. Arifin, “Klasifikasi Sel Tunggal Pap Smear Berdasarkan Analisis Fitur Berbasis Naïve Bayes Classifier Dan Particle Swarm Optimization,” vol. 4, no. 2, pp. 186–193, 2016.




DOI: https://doi.org/10.32520/stmsi.v10i2.1235

Article Metrics

Abstract view : 38 times
PDF - 15 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.