Analisis Kebutuhan Kualitas Data dan Aturan Bisnis Data Pendidikan
Abstract
Abstrak
Politeknik Statistika STIS sebagai organisasi pendidikan tinggi harus memenuhi kebutuhan data penyelengaraan pendidikan yang diperlukan Pangkalan Data Pendidikan Tinggi (PDDikti) secara berkala. Penelitian sebelumnya menemukan bahwa Politeknik Statistika STIS memiliki masalah untuk memenuhi dimensi kualitas data yang dibutuhkan oleh PDDikti. Salah satu akar masalah yang menyebabkan kualitas data yang rendah pada organisasi Politeknik Statistika STIS adalah kurangnya kegiatan manajemen kualitas data dalam organisasi sehingga kualitas data tidak termonitor dengan baik. Penelitian ini bertujuan untuk melakukan kegiatan manajemen kualitas data yaitu mendefinisikan kebutuhan kualitas data dan mendefinisikan aturan kualitas data organisasi dalam bidang pendidikan, penelitian, dan pengabdian masyarakat. Metode pengumpulan data dalam penelitian ini terdiri dari studi dokumen, observasi, dan wawancara. Tahapan-tahapan analisis penelitian ini berhasil mengidentifikasi 15 proses bisnis, 12 aktor proses bisnis, dan 31 entitas data. Kebutuhan kualitas data Politeknik Statistika STIS berdasarkan penelitian ini adalah kelengkapan, akurasi, kebenaran, konsistensi, ketepatan waktu, kewajaran, keterkinian, dan keterlacakan. Dimensi kebutuhan kualitas data yang paling banyak ditemukan adalah kelengkapan dan akurasi. Penelitian ini berhasil mengidentifikasi 243 aturan kualitas data dan berhasil menyusun matriks penilaian kualitas data sebagai salah satu acuan yang diajukan untuk mengevaluasi kualitas data organisasi Politeknik Statistika STIS yang berhubungan dengan penyelenggaraan pendidikan akademik, penelitian, dan pengabdian masyarakat.
Kata kunci: kualitas data, kebutuhan kualitas data, aturan kualitas data
Abstract
Polytechnic of Statistics STIS as a higher education organization should periodically fulfill the requirement of education data provided by Pangkalan Data Pendidikan Tinggi (PDDikti). Previous research found that Polytechnic of Statistics STIS has problem to fulfill the data quality dimension required by PDDikti. One of the root cause of insufficient data quality on Polytechnic of Statistics STIS’s organization is the lack of data quality management activity on the organization, thus resulting in lack of data quality monitoring. This research’s objective is to conduct data quality management activities consisting of to define data quality requirement and to define data quality rules in scope of education, research, and community service. Data collection methods used in this research were document studies, observations, and interviews. Research’s data analysis managed to identify 15 business processes, 12 process business actors, and 31 data entities. The data quality requirements of Polytechnic of Statistics STIS according of this research are completeness, accuracy, validity, consistency, timeliness, reasonableness, currency, and lineage. The most discovered dimensions of data quality requirement are completeness and accuracy. This research managed to identify 243 data quality rules and managed to formulate data quality assessment metrics as a proposed reference to evaluate data quality on Polytechnic of Statistics STIS’s organization relating to academic education, research, and community service.
Keywords: data quality, data quality requirement, data quality rulesFull Text:
PDFReferences
Badan Pusat Statistik, “Peraturan Kepala Badan Pusat Statistik nomor 87 tahun 2017 tentang organisasi dan tata kerja Politeknik Statistika STIS.” hal. 1–16, 2017.
Republik Indonesia, Undang-Undang Tahun 2012 Tentang Pendidikan Tinggi. 2012.
Menristekdikti, Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Nomor 61 Tahun 2016 Tentang Pangkalan Data Pendidikan Tinggi, Pangkalan Data Pendidikan Tinggi. 2016, hal. 61.
W. Wijayanti, A. N. Hidayanto, N. Wilantika, I. R. Adawati, dan S. B. Yudhoatmojo, “Data quality assessment on higher education: A case study of institute of statistics,” in 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2018, 2018, hal. 231–236.
N. Wilantika dan W. C. Wibowo, “Data Quality Management in Educational Data,” J. Sist. Inf., vol. 15, no. 2, hal. 52–67, 2019.
M. Mosley, M. Brackett, S. Earley, dan D. Henderson, DAMA-DMBOK: Guide. 2009.
D. Gagliardi, “Material data matter — Standard data format for engineering materials,” Technol. Forecast. Soc. Change, vol. 101, hal. 357–365, 2015.
L. Sebastian-Coleman, Measuring data quality for ongoing improvement: a data quality assessment framework. Newnes, 2012.
P. H. S. Panahy, F. Sidi, L. S. Affendey, dan M. A. Jabar, “The Impact of Data Quality Dimensions on Business Process Improvement,” in 2014 4th World Congress on Information and Communication Technologies, WICT 2014, 2014, hal. 70–73.
D. Loshin, The Practitioner’s Guide to Data Quality Improvement. Morgan Kaufmann, 2011.
D. Plotkin, Data stewardship: An actionable guide to effective data management and data governance. Academic Press, 2020.
C. Falge, B. Otto, dan H. Österle, “Data Quality Requirements of Collaborative Business Processes,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2012.
P. Mayring, “Qualitative content analysis,” A companion to Qual. Res., vol. 1, no. 2, hal. 159–176, 2004.
A. Dipalokareswara, H. Mubarok, dan A. K. Efendi, “Arsitektur Data dan Informasi untuk Mendukung Perancangan Data Warehouse Perumahan,” J. Penelit. Sitrotika Univ. Siliwangi, 2014.
D. Zaliluddin, “Enterprise Architecture Planning Sistem Informasi Perusahaan Manufaktur (Studi Kasus: CV . Harta Jaya Perusahaan),” Infotech J., 2012.
C. J. Limanto, L. P. Dewi, dan A. Wibowo, “Pembuatan Arsitektur Data Di Perusahaan X,” J. Infra, 2016.
J. Saldaña, The Coding Manual for Qualitative Researchers (2nd Ed.). 2013.
D. Plotkin, Data Stewardship. An Actionable Guide to Effective Data Management and Data Governance. Elsevier, 2014.
DOI: https://doi.org/10.32520/stmsi.v10i3.1381
Article Metrics
Abstract view : 657 timesPDF - 224 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.