Sistem Pendukung Keputusan Penentuan Kualitas Benih Bunga Viola Menggunakan Simple Additive Weighting

Nina Setiyawati, Elya Eko Widiyanto

Abstract


Abstrak

Bidang pertanian di Indonesia saat ini semakin berkembang pesat. Salah satunya adalah komoditas bunga yang telah berhasil diekspor hingga ke banyak negara. Banyak kriteria yang ditentukan untuk memenuhi standar ekspor. Bunga Viola merupakan salah satu komoditas ekspor Indonesia, di mana kualitas benih bunga sangat diperhatikan untuk menjaga permintaan pasar internasional. Oleh karena itu, bunga Viola harus melalui tahap penentuan kualitas dan pemeringkatan sebelum dikirim. Sayangnya proses pendataan yang dilakukan secara manual menyebabkan ketidak akuratan data. Proses pemeringkatan yang dibutuhkan cukup panjang dan hal tersebut rentan dengan kehilangan berkas manual maupun pencatatan yang tidak akurat sehingga memperlambat proses penentuan ranking. Penelitian ini bertujuan untuk mengimplementasikan metode Simple Additive Weighting (SAW) untuk menentukan kualitas benih bunga Viola. Aplikasi dibangun menggunakan bahasa pemrograma Hypertext Prepocessor (PHP), framework CSS Bootstrap, serta database MySQL. Dari hasil pengujian didapatkan bahwa metode SAW mampu menentukan kualitas benih bunga Viola dengan akurasi 83,34% dan presisi pada kualitas Baik adalah 92,1%.

Kata kunci: kualitas benih, ranking benih, simple additive weighting

 

Abstract

The agricultural sector in Indonesia is currently growing rapidly. One of them is flower commodities which have been successfully exported to many countries. Many criteria are specified to meet export standards. Viola flower is one of Indonesia's export commodities, where the quality of flower seeds is very important to maintain international market demand. Therefore, Viola flowers must go through a quality determination and rating stage before being sent. Unfortunately the data collection process that is done manually causes data inaccuracies. The ranking process required is quite long and it is vulnerable to loss of manual files or inaccurate records, thus slowing down the ranking process. This study aims to implement the Simple Additive Weighting (SAW) method to determine the quality of Viola flower seeds. The application is built using the Hypertext Preprocessor (PHP) programming language, CSS Bootstrap framework, and MySQL database. From the test results, it was found that the SAW method was able to determine the quality of Viola flower seeds with an accuracy of 83.34% and the precision on Good quality was 92.1%.

Keywords:  seed ranking, seed quality, simple additive weighting


Full Text:

PDF

References


Anwar, D. S., & Rohpandi, D. (2018). Sistem Pendukung Keputusan Untuk Menentukan Lahan Tanaman Cabai Dengan Menggunakan Metode Simple Additive Weighting (pp. 657–660).

Arini, A.-, Wardhani, L. K., & Octaviano, D.-. (2020). Perbandingan Seleksi Fitur Term Frequency & Tri-Gram Character Menggunakan Algoritma Naïve Bayes Classifier (Nbc) Pada Tweet Hashtag #2019gantipresiden. Kilat, 9(1), 103–114. https://doi.org/10.33322/kilat.v9i1.878

Bassil, Y. (2012). A Simulation Model for the Waterfall Software Development Life Cycle. 2(5).

Elistri, M., Wahyudi, J., & Supardi, R. (2014). Penerapan Metode SAW Dalam Sistem Pendukung Keputusan Pemilihan Jurusan Pada Sekolah Menengah Atas Negeri 8 Seluma. Jurnal Media Infotama Penerapan Metode SAW… ISSN, 10(2), 1858–2680.

Firdausy, V. N., Agus, F., & Astuti, I. F. (2017). Aplikasi Android Hybrid Untuk Pemilihan Lokasi Kuliner. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 12(1), 30. https://doi.org/10.30872/jim.v12i1.220

Hendrawan, M. (2014). Rekrutmen Karyawan Di Pt Indo Beras Unggul Menggunakan Metode Analytical Hierarchy Process ( Ahp ). Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA).

Javeed, I., Narayan, S., Malik, A. A., Kumar, A., Rahman, Ri., Nisar, S., Afroza, A., Indrabi, S. A., & Sultan, A. (2020). The role of information and communication technology in agriculture. International Journal of Current Microbiology and Applied Sciences, March, 3528–3531. https://doi.org/10.1109/ICISE.2009.1282

Kusumadewi, S. (2006). Fuzzy multi-attribute decision making (fuzzy madm). Graha Ilmu.

Nasution, D., Khotimah, H. H., & Chamidah, N. C. (2019). Perbandingan Normalisasi Data Untuk Klasifikasi Wine Menggunakan Algoritma K-NN. 4(1), 78–82.

Pandey, N. (2017). Role of Information and Communication Technology in Agriculture Development: a Study of Nabarangpur District. Scholedge International Journal of Business Policy & Governance ISSN 2394-3351, 4(4), 24. https://doi.org/10.19085/journal.sijbpg040401

Rikki, A., Marbun, M., Siregar, J. R., & Kunci, K. (2016). Sistem Pendukung Keputusan Penerimaan Karyawan Dengan Metode Saw Pada Pt . Karya Sahata Medan. 1(1).

Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (C4.5) Untuk Menganalisa Kelancaran Pembiayaan (Study Kasus : KSPPS / BMT AL-FADHILA. Jurnal Teknologi Informasi Magister Darmajaya, 2(01), 52–62.

Setiyawati, N., & Hariyanto, M. (2020). Rancang Bangun Aplikasi Perizinan Surat Tugas dan. 5(April), 213–220.

Singh, S., Ahlawatat, S., & Sanwal, S. (2017). Role of ICT in Agriculture: Policy implications. Oriental Journal of Computer Science and Technology, 10(3), 691–697. https://doi.org/10.13005/ojcst/10.03.20

Tajvidi Asr, E., Hayaty, M., Rafiee, R., Ataie, M., & Jalali, S. E. (2015). Selection of Optimum Tunnel Support System Using Aggregated Ranking of SAW, TOPSIS and LA Methods. International Journal of Applied Operational Research, 5(4), 49–63.

Taufiq, R., & Permana, A. A. (2018). Sistem Pendukung Keputusan Penerimaan Karyawan Menggunakan Simple Additive Weighting Studi Kasus PT. Trafoindo Prima Perkasa. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 4(4), 186. https://doi.org/10.36722/sst.v4i4.309

Ulandari, N. W. A., Dantes, G. R., & Divayana, D. G. H. (2018). Implementasi Metode AHP dan SAW dalam Sistem Pendukung Keputusan Prediksi Potensi Akademik Mahasiswa STMIK STIKOM Bali. Jurnal Pendidikan Teknik Informatika, 9(1), 223–227.




DOI: https://doi.org/10.32520/stmsi.v10i3.1391

Article Metrics

Abstract view : 96 times
PDF - 62 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.