Factor Analysis of Kemendikbud's Free Internet Quota on the Online Learning Process

Marshel Aditya Prayoga, Rinabi Tanamal

Abstract


Covid-19 emerged from a widespread virus originated from the Wuhan, Chinese, which caused a pandemic on a large scale, and hit various countries, especially in Indonesia. The Covid-19 pandemic that hit Indonesia made several aspects of life change significantly, especially in the field of education. Changes in the educational process that were previously face-to-face, are transformed into distance learning or online. Various needs emerged in this online learning process, such as the availability of internet network access was not smooth, the problem of the cost of buying internet quota, and limits on access to internet quotas obtained. Kementerian Pendidikan dan Kebudayaan (Kemendikbud) as the regulator of learning activities in Indonesia, strives for the smooth running of online learning activities at all levels, by distributing internet data packages to educators and students. Based on program from Kemendikbud, this research is expected to see the various factors that influence in the free internet quota program affect the online learning process for students at Universitas Ciputra Surabaya. The method used to collect survey data in this study is a questionnaire, and determining respondents using simple random sampling method, instrument distributed online to 90 users of free internet quota from Kemendikbud, because the Covid-19 pandemic is still not over. After the required data has been collected, validity and reliability tests are carried out and hypothesis testing is carried out using the SEM-PLS method using SmartPLS 3.3.3 software. The results of the tests carried out stated that there was a positive and significant influence given by the Benefit (KB) variable on Online Learning (PD) with a relationship value of 0.476, then there was a positive but insignificant effect given by the Network Quality (KJ) variable on the Learning variable. Online (PD) with a relationship value of 0.113, then there is a positive and significant influence provided by the Ease (KM) variable on the Online Learning (PD) variable with a relationship value of 0.355.

Full Text:

PDF

References


N. Leuwol and S. Gaspersz, “Perubahan Karakter Belajar Mahasiswa,” J. Ilmu Pendidik. PKN Sos. Budaya, vol. 4, no. 1, pp. 32–44, 2020, doi: https://doi.org/10.31597/cc.v4i1.355.

Firman, “Dampak Covid-19 terhadap Pembelajaran di Perguruan Tinggi,” J. Biol. dan Pembelajarannya, vol. 2, no. 1, pp. 14–20, 2020.

F. N. Arifa, “Tantangan Pelaksanaan Kebijakan Belajar Dari Rumah Dalam Masa Darurat Covid-19,” Info Singkat;Kajian Singk. Terhadap Isu Aktual Dan Strateg., vol. XII, no. 7/I, p. 6, 2020.

Kemendikbud, “Surat Ederan Nomor 1 Tahun 2020 Tentang Pencegahan Penyebaran COVID-19 Di Perguruan Tinggi, Kementrian Pendidikan Dan Kebudayaan,” Http://Kemdikbud.Go.Id/, vol. 126, no. 021, pp. 1–2, 2020.

Sekertaris Jenderal Kemendikbud, “Peraturan Sekertaris Jenderal Nomor 14 Tahun 2020 Tentang Petunjuk Teknis Bantuan Kuota Data Internet Tahun 2020,” vol. 21, no. 1, pp. 1–9, 2020.

A. Hasanah, A. Sri Lestari, A. Y. Rahman, and Y. I. Danil, “Analisis Aktivitas Belajar Daring Mahasiswa Pada Pandemi COVID-19,” Karya Tulis Ilm. Masa Work From Home Covid-19 UIN Sunan Gunung Djati Bandung Tahun 2020, pp. 4–8, 2020.

O. I. Handarini and S. S. Wulandari, “Pembelajaran Daring Sebagai Upaya Study From Home (SFH) Selama Pandemi Covid 19,” J. Pendidik. Adm. Perkantoran, vol. 8, no. 3, pp. 496–503, 2020, doi: 10.2670.

A. Wicaksono, “Kuota Internet Gratis dari Nadiem Berselimut Masalah,” CNN Indonesia, 2020.

Kemdikbud, Buku Saku Program Kuota Belajar bagi Siswa, Guru, Mahasiswa, dan Dosen. 2020.

T. Wiradinata, “Mobile Payment Services Adoption: The Role of Perceived Technology Risk,” 2018 Int. Conf. Orange Technol. ICOT 2018, pp. 1–5, 2018, doi: 10.1109/ICOT.2018.8705859.

R. E. Setyawati, “Pengaruh Perceived Usefullness, Perceived Ease of Use Terhadap Behavioral Intention to Use dengan Atittude Towards Using Sebagai Variabel Intervening,” J. Ekobis Dewantara, vol. 3, no. 1, pp. 1–9, 2020.

A. B. Cindy, “Analisis Pengaruh Harga Paket, Kualitas Jaringan, dan Promosi Terhadap Keputusan Pembelian Kartu Perdana Internet (Survey Mahasiswa Fakultas Ekonomi dan Bisnis Universitas Muhammadiyah Surakarta),” J. Chem. Inf. Model., vol. 53, no. 9, pp. 5–7, 2017.

N. Nazirwan, N. M. Halim, and R. Fadhil, “Peran Trust, Perceived Usefulness, Perceived Ease of Use, Perceived E-Service Quality, dan Perceiver Risk Terhadap Behavior Intention,” Apresiasi Ekon., vol. 8, no. 2, 2018.

U. Rahardja, N. Lutfiani, and R. Rahmawati, “Persepsi Mahasiswa Terhadap Berita Pada Website APTISI,” J. Ilm. SISFOTENIKA, vol. 8, no. 2, pp. 117–127, 2018.

F. Cecilia and T. Rinabi, “Green Satisfaction , Green Perceived Quality, and Green Trust on The Apple Consumer using SEM-PLS in Surabaya,” SISFORMA J. Inf. Syst. Vol.07, vol. 01, 2019, doi: 10.24167/Sisforma.

R. Tanamal, “Analisis Faktor Yang Paling Berpengaruh Pada Keinginan Menggunakan Aplikasi Grab Di Kota Surabaya,” J. Terap. Teknol. Inf., vol. 1, no. 2, pp. 121–130, 2017, doi: 10.21460/jutei.2017.12.48.

A. Juliandi, “Structural Equation Model Partial Least Square ( Sem-Pls ),” pp. 1–6, 2018, doi: 10.5281/zenodo.1243777.




DOI: https://doi.org/10.32520/stmsi.v11i1.1411

Article Metrics

Abstract view : 405 times
PDF - 283 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.