Prediction of Mortlity Rate in Indonesia due to Covid-19 Using the Naïve Bayes Algorithm

Abdi Rahim Damanik, Dedy Hartama, Irfan Sudahri Damanik

Abstract


One of the functions of this research is to obtain the latest information regarding the level of accuracy and death rates due to the Covid-19 pandemic. One of the tasks of planning a response to a pandemic is to access data related to the number of deaths due to Covid-19. The research that the author is carrying out will predict the death rate due to the COVID-19 pandemic in Indonesia. This study collects all data sourced from the website address https://sinta.ristekbrin.go.id/covid/datasets. By using Indonesia's death rate data due to covid-19 from March 2020 to July 2021. The calculation process and prediction workflow will use the Naïve Bayes Algorithm to be able to measure accuracy and predict the death rate due to the coronavirus in 2022. Prediction testing data figures with a total of 20 the area is in the highest class with a death rate of 120,568 cases obtained based on the calculation of the Naive Bayes algorithm, for an accuracy performance of 100% by testing using Rapidminer tools. It is hoped that the results of this prediction can be used by the government to overcome and set plans for good improvements to the community during the coronavirus pandemic.


Full Text:

PDF

References


Arman Haqqi Anna Zili, Selly Anastassia Amellia Kharis, and Dian Lestari, “Peramalan Tingkat Kematian Indonesia Akibat Covid-19 Menggunakan Model Arima,” J. Indones. Sos. Sains, vol. 2, no. 1, pp. 1–8, 2021, doi: 10.36418/jiss.v2i1.143.

M. Arman, “Metode Pertahanan Web Server Terhadap Distributed Slow HTTP DoS Attack,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 56–70, 2020, doi: 10.35957/jatisi.v7i1.284.

Ermanto and D. Mahardi, “PENERAPAN DATA MINING UNTUK KLASIFIKASI PANDEMI COVID-19 DI INDONESIA DENGAN ALGORITMA NAÏVE BAYES,” SIGMA - J. Teknol. Pelita Bangsa, vol. 54, no. 4, pp. 337–348, 2020, doi: 10.31857/s0320930x20040088.

Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020, doi: 10.52158/jacost.v1i1.9.

R. Riskania and F. Thalib, “Implementasi Algoritma Naïve Bayes Classifier Dan Confusion Matrix Dalam Analisis Sentimen Terhadap Pelayanan Transportasi Umum Selama Pandemi Covid-19 Pada Media Sosial Twitter,” J. Teknol., vol. 8, no. 1, pp. 64–75, 2020, doi: 10.31479/jtek.v1i8.66.

I. Fery and R. Rachman, “Sistem Pakar Diagnosa Virus Corona Dengan Metode Naïve Bayes,” eProsiding Tek. Inform., vol. 9, no. 1, pp. 246–251, 2021.

M. Yusa, A. Erlansari, L. Haryani, Ernawati, and L. A. Umar, “Sistem Pakar : Implementasi Metode Bayes Probabilties untuk Penentuan Kriteria Pasien COVID-19 Berdasarkan Fitur Gejala,” J. Teknol. Inf. dan Terap., vol. 8, no. 1, pp. 13–20, 2021.

R. A. D. Yunas, A. Triayudi, and I. D. Sholihati, “Implementasi Sistem Pakar untuk Mendeteksi Virus Covid-19 dengan Perbandingan Metode Naïve Bayes dan Certainty Factor,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 3, p. 338, 2021, doi: 10.35870/jtik.v5i3.221.

A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” J. Sistim Inf. dan Teknol., vol. 3, pp. 88–94, 2021, doi: 10.37034/jsisfotek.v3i3.137.

N. Nurdin, M. Suhendri, Y. Afrilia, and R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, p. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.

D. P. B. Bestari, R. Saptono, and R. Anggrainingsih, “Academic Articles Classification Using Naive Bayes Classifier (Nbc) Method,” J. Ilm. Teknol. dan Inf., vol. 7, no. 2, pp. 74–81, 2018.

D. Y. Liliana, H. Maulana, and A. Setiawan, “Data Mining for Prediction of Covid-19 Patient Status using Naive Bayes Classifier”, JURNAL MULTIMEDIA NETWORKING INFORMATICS, vol. 7, no. 1, pp. 48–53, Jun. 2021.

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter ”, RESTI, vol. 5, no. 4, pp. 820 - 826, Aug. 2021.

S. W. . Mulia, S. Sujiharno, And A. . Wibowo, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Frekuensi Tunai Pada Mesin Atm Di Masa Transisi Pembatasan Sosial Berskala Besar (Psbb) Pandemi Covid-19”, Sintech Journal, Vol. 4, No. 1, Pp. 47-52, Apr. 2021.

F. Novaldy And A. Herliana, "Penerapan Pso Pada Naïve Bayes Untuk Prediksi Harapan Hidup Pasien Gagal Jantung", Jurnal Responsif : Riset Sains Dan Informatika, Vol. 3, No. 1, Pp. 37-43, 2021. Available: 10.51977/Jti.V3i1.396.




DOI: https://doi.org/10.32520/stmsi.v11i1.1519

Article Metrics

Abstract view : 178 times
PDF - 81 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.