X-Ray Classification of Pneumonia by Neural Networks Convolution using Vgg Architecture

Toni Arifin, Naufal Hidayah Surya

Abstract


Pneumonia is one of the deadliest diseases, killing 2-3 million people in developed countries like the United States. Based on WHO's view, pneumonia is one of the leading causes of death in children worldwide, WHO says many children under the age of 5 have died from the disease. And in 2017, the World Health Organization (commonly known as WHO) reported that  pneumonia had claimed the lives of 800,000 children under the age of 5. This is  why  researchers developed this program,  to help the  public  diagnose pneumonia. In this study, we generated a Deep Learning model using the CNN (Convolutional neural network) approach using the VGG16 architecture for thoracic pneumonia classification and normalization. The results of this study show that the Convolution neural network method can classify chest X-ray results  with pneumonia with the highest accuracy of 0.9772

Full Text:

PDF

References


D. A. Wibowo and G. Ginanjar, “Hubungan Faktor Determinan Penyakit Infeksi Saluran Pernapasan Akut (Ispa) dengan Kejadian Inpeksi Saluran Pernafasan Akut (Ispa) Pneumonia pada Balita di Wilayah Kerja Puskesmas Cipaku Kabupaten Ciamis Tahun 2020,” J. Keperawatan Galuh, vol. 2, no. 2, p. 43, 2020, doi: 10.25157/jkg.v2i2.4532.

W. H. Organization, “Pneumonia,” 2021. https://www.who.int/news-room/fact-sheets/detail/pneumonia

C. Ebeledike and T. Ahmad, “Pediatric Pneumonia,” StatPearls Publishing, 2022. https://www.ncbi.nlm.nih.gov/books/NBK536940/ (accessed Apr. 20, 2022).

I. M. D. Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional neural network,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 190–195, 2020, doi: 10.22146/jnteti.v9i2.66.

W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional neural network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.

P. Arfienda, “Materi Pendamping Memahami Convolutional Neural Networks Dengan Tensorflow,” https://algorit.ma/, 2019. https://algorit.ma/blog/convolutional-neural-networks-tensorfflow/

Y. S. Hariyani, S. Hadiyoso, and T. S. Siadari, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 2, p. 443, 2020, doi: 10.26760/elkomika.v8i2.443.

R. A. Wati, H. Irsyad, and M. E. Al Rivan, “Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine,” J. Algoritm., vol. 1, no. 1, pp. 21–32, 2020, [Online]. Available: https://jurnal.mdp.ac.id/index.php/algoritme/article/view/429/171

B. Triharyanto, Klasifikasi Paru-Paru Normal Dan Tidak Berdasarkan Citra X-Ray Thorax Dengan Backpropagation Klasifikasi Paru-Paru Normal Dan Tidak Berdasarkan Citra X-Ray Thorax. Fakultas Sains dan Teknologi, 2020.

L. A. Andika, H. Pratiwi, and S. S. Handajani, “Lingga Aji Andika 1 , Hasih Pratiwi 2 , and Sri Sulistijowati Handajani 3 1,” Indones. J. Stat. Its Appl., vol. 3, no. 3, pp. 331–340, 2019.

A. Ramdhan, “Klasifikasi Citra Rontgen Paru-Paru dengan Ekstraksi Fitur Histogram dan Metode Naive Bayes Classifier, S1,” vol. 3, no. 1, pp. 1–41, 2016.

R. Rahmadewi and R. Kurnia, “Klasifikasi Penyakit Paru Berdasarkan Citra Rontgen dengan Metoda Segmentasi Sobel,” J. Nas. Tek. Elektro, vol. 5, no. 1, p. 7, 2016, doi: 10.25077/jnte.v5n1.174.2016.

A. H. Ahnafi, A. Arifianto, and K. N. Ramadhani, “Pneumonia Classification from X-ray Images using Residual Neural Network,” Ind. J. Comput., vol. 5, no. September, pp. 43–54, 2020, doi: 10.21108/indojc.2020.5.2.454.

A. Achmadi and Narbuko, Teori Metodologi Penelitian. Jakarta: Bumi Aksara, 2012.

C. Dawson, A practical Guide to Research Methods: A User-friendly Manual for Mastering Research Techniquies and pProjects, 2nd edition. How to Books, 2006.




DOI: https://doi.org/10.32520/stmsi.v11i3.1597

Article Metrics

Abstract view : 155 times
PDF - 53 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.