Implementation of Dijkstra Algorithm with React Native to Determine Covid-19 Distribution

Rosyid Ridlo Al Hakim, Purwono Purwono, Yanuar Zulardiansyah Arief, Agung Pangestu, Muhammad Haikal Satria, Eko Ariyanto

Abstract


Since Covid-19 was declared a global pandemic because it has spread throughout the world, every effort has been made to help prevent and tackle the transmission of Covid-19, including information technology. Information technology developed to determine the shortest distance for Covid-19 cases around us needs to be developed. This research implements Dijkstra's Algorithm written in the React Native programming language to build a Covid-19 tracking application. The system can display the closest distance with a radius of at least one meter, and the test results can map the nearest radius of 41 meters and the most immediate radius of 147 meters. This system is built for the compatibility of Android OS and iOS applications with React Native programming.


Full Text:

PDF

References


R. R. Al Hakim, E. Rusdi, and M. A. Setiawan, “Android Based Expert System Application for Diagnose COVID-19 Disease : Cases Study of Banyumas Regency,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 2, pp. 1–13, 2020, doi: 10.26714/jichi.v1i2.5958.

R. R. Al Hakim, “Pencegahan Penularan Covid-19 Berbasis Aplikasi Android Sebagai Implementasi Kegiatan KKN Tematik Covid-19 di Sokanegara Purwokerto Banyumas,” Community Engagem. Emerg. J., vol. 2, no. 1, pp. 7–13, Aug. 2021, doi: 10.37385/ceej.v2i1.125.

R. Vaishya, M. Javaid, I. H. Khan, and A. Haleem, “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 4, pp. 337–339, Jul. 2020, doi: 10.1016/j.dsx.2020.04.012.

J. A. Firth et al., “Using a real-world network to model localized COVID-19 control strategies,” Nat. Med., vol. 26, no. 10, pp. 1616–1622, Oct. 2020, doi: 10.1038/s41591-020-1036-8.

A. M. Ahmed, “Designing a Framework to Control ‎the Spread of Covid-19 by Utilizing ‎Cellular System,” Kurdistan J. Appl. Res., vol. 5, no. 3, pp. 146–153, Jun. 2020, doi: 10.24017/covid.16.

M. Qomaruddin, M. T. Alawy, and S. Sugiono, “Perancangan Aplikasi Penentu Rute Terpendek Perjalanan Wisata di Kabupaten Jember Menggunakan Algoritma Dijkstra,” Sci. Electro, vol. 6, no. 2, pp. 31–39, 2018.

D. Wahyuningsih and E. Syahreza, “Shortest Path Search Futsal Field Location With Dijkstra Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12, no. 2, p. 161, 2018, doi: 10.22146/ijccs.34513.

Farid and Y. Yunus, “Analisa Algoritma Haversine Formula untuk Pencarian Lokasi Terdekat Rumah Sakit dan Puskesmas Provinsi Gorontalo,” Ilk. J. Ilm., vol. 9, no. 3, pp. 353–355, 2017.

M. Alsaqer, B. Hilton, T. Horan, and O. Aboulola, “Performance Assessment of Geo-triggering in Small Geo-fences: Accuracy, Reliability, and Battery Drain in Different Tracking Profiles and Trigger Directions,” Procedia Eng., vol. 107, pp. 337–348, 2015, doi: 10.1016/j.proeng.2015.06.090.

H. Brito, A. Gomes, A. Santos, and J. Bernardino, “JavaScript in mobile applications: React native vs ionic vs NativeScript vs native development,” in Iberian Conference on Information Systems and Technologies, CISTI, Jun. 2018, vol. 2018-June, pp. 1–6, doi: 10.23919/CISTI.2018.8399283.

S. R. Garzon, D. Arbuzin, and A. Kupper, “Geofence index: A performance estimator for the reliability of proactive location-based services,” Proc. - 18th IEEE Int. Conf. Mob. Data Manag. MDM 2017, pp. 1–10, 2017, doi: 10.1109/MDM.2017.12.

R. Sayeed, D. Gottlieb, and K. D. Mandl, “SMART Markers: collecting patient-generated health data as a standardized property of health information technology,” npj Digit. Med., vol. 3, no. 1, pp. 1–8, 2020, doi: 10.1038/s41746-020-0218-6.

A. H. Abbas, M. I. Habelalmateen, S. Jurdi, L. Audah, and N. A. M. Alduais, “GPS based location monitoring system with geo-fencing capabilities,” in AIP Conference Proceedings, 2019, vol. 2173, p. 20004, doi: 10.1063/1.5133929.

O. M. Zambrano, A. M. Zambrano, M. Esteve, and C. Palau, “An Innovative and Economic Management of Earthquakes: Early Warnings and Situational Awareness in Real Time,” Wirel. Public Saf. Networks 3 Appl. Uses, pp. 19–38, 2017, doi: 10.1016/B978-1-78548-053-9.50002-0.

A. Sedeño-noda and M. Colebrook, “A biobjective Dijkstra algorithm,” Eur. J. Oper. Res., vol. 276, no. 1, pp. 106–118, 2019, doi: 10.1016/j.ejor.2019.01.007.

S. X. Wang, “The improved Dijkstra’s shortest path algorithm and its application,” in Procedia Engineering, Jan. 2012, vol. 29, pp. 1186–1190, doi: 10.1016/j.proeng.2012.01.110.

R. R. Al Hakim et al., “Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 1, pp. 42–47, 2021, doi: 10.36448/expert.v11i1.1939.

Y. Z. Chen, S. F. Shen, T. Chen, and R. Yang, “Path optimization study for vehicles evacuation based on Dijkstra algorithm,” in Procedia Engineering, Jan. 2014, vol. 71, pp. 159–165, doi: 10.1016/j.proeng.2014.04.023.




DOI: https://doi.org/10.32520/stmsi.v11i1.1667

Article Metrics

Abstract view : 235 times
PDF - 106 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.