Finding Customer Patterns Using FP-Growth Algorithm for Product Design Layout Decision Support

Erna Haerani, Christina Juliane

Abstract


The transaction database contains a very large and irregular dataset that requires another mechanism to read it, even though there is a lot of new knowledge that can be revealed, including associations or relationships between goods or products that are often purchased by customers. The new finding of the relationship between these variables is usually called association rule mining. The algorithm that is developing and often used is frequent pattern-growth (FP-Growth). The problem of very many transaction databases also occurred in Mr. A. So, in this research, we will look for customer patterns using the FP-Growth algorithm. The algorithm aims to find the maximum frequent itemset. The frequent itemset will be generated into associative rules so that it becomes valuable new knowledge. This knowledge can be used as a reference and consideration in making decisions. The FP-Growth algorithm will be implemented using the rapidminer tools on the transaction data of Mr.A's goods sales. The pattern of rules that will be searched for is based on data on sales of goods transactions. The results of the study obtained six association rules with five conclusions being the gift category. So that the suggestion for decision making is to lay out items close to and around the gift category in order to improve marketing and service strategies in order to attract the attention and interest of pointers in making purchases of goods.


Full Text:

PDF

References


“About Us | MR.DIY,” 2021. https://www.mrdiy.com/id/page/tentang-kami/ (accessed Nov. 26, 2021).

J. Han, M. Kamber, and J. Pei, Data mining: Data mining concepts and techniques. 2013. doi: 10.1109/ICMIRA.2013.45.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, “FreeSpan,” in Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’00, 2000, pp. 355–359. doi: 10.1145/347090.347167.

Y.-L. Chen, K. Tang, R.-J. Shen, and Y.-H. Hu, “Market basket analysis in a multiple store environment,” Decision Support Systems, vol. 40, no. 2, pp. 339–354, Aug. 2005, doi: 10.1016/j.dss.2004.04.009.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset counting and implication rules for market basket data,” ACM SIGMOD Record, vol. 26, no. 2, pp. 255–264, Jun. 1997, doi: 10.1145/253262.253325.

P. Giudici and G. Passerone, “Data mining of association structures to model consumer behaviour,” Computational Statistics & Data Analysis, vol. 38, no. 4, pp. 533–541, Feb. 2002, doi: 10.1016/S0167-9473(01)00077-9.

E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 2, pp. 472–478, Jun. 2018, doi: 10.29207/resti.v2i2.280.

M. Kaur and S. Kang, “Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining,” Procedia Computer Science, vol. 85, pp. 78–85, 2016, doi: 10.1016/j.procs.2016.05.180.

Y. Li and R. P. Gopalan, “Effective Sampling for Mining Association Rules,” 2004, pp. 391–401. doi: 10.1007/978-3-540-30549-1_35.

M. Dhanabhakyam and M. Punithavalli, “A Survey on Data Mining Algorithm for Market Basket Analysis,” Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc, vol. 11, 2011.

F. Kurniawan, B. Umayah, J. Hammad, S. M. S. Nugroho, and M. Hariadi, “Market Basket Analysis to Identify Customer Behaviours by Way of Transaction Data,” Knowledge Engineering and Data Science, vol. 1, no. 1, p. 20, Dec. 2017, doi: 10.17977/um018v1i12018p20-25.

Nugroho Wandi, Rully A. Hendrawan, and Ahmad Mukhlason, “Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Penggalian Association Rule Menggunakan Algoritma Apriori (Studi Kasus Badan Perpustakaan Dan Kearsipan Provinsi Jawa Timur),” Jurnal Teknik ITS, vol. 1, no. 1, 2012.

I. Ukiarwan, “Penentuan Aturan Asosiasi pada Penjualan Produk Sepatu Running Menggunakan Algoritma Apriori,” Yogyakarta, 2017.

D. Listriani, A. H. Setyaningrum, and F. Eka, “Penerapan Metode Asosiasi Menggunakan Algoritma Apriori pada Aplikasi Analisa Pola Belanja Konsumen (Studi Kasus Toko Buku Gramedia Bintaro),” Jurnal Teknik Informatika, vol. 9, no. 2, Jan. 2018, doi: 10.15408/jti.v9i2.5602.

I. F. Fauzi, A. Rahmatulloh, and A. Nurachman, “Sistem Pendukung Keputusan Untuk Menentukan Rekomendasi Wisata Dengan Menggunakan Metode Profile Matching dan SMART,” Informatics and Digital Expert (INDEX), vol. 2, no. 2, Feb. 2021, doi: 10.36423/index.v2i02.588.

G. Permana, A. Rahmatulloh, and R. Rianto, “Sistem Pendukung Keputusan Layanan Verifikator Pengadaan dengan Metode Simple Multi Attribute Rating Technique (SMART),” JUITA : Jurnal Informatika, vol. 6, no. 2, p. 99, Nov. 2018, doi: 10.30595/juita.v6i2.3204.

Nuqson Masykur Huda, “Aplikasi Data Mining Untuk Menampilkan Informasi Tingkat Kelulusan Mahasiswa,” Yogyakarta, 2010.

N. Nurani and H. Gani, “Analisis Keterkaitan Data Transaksi Penjualan Buku Menggunakan Algoritma Apriori dan Algoritma Centroid Linkage Hierarchical Method (CLHM),” ILKOM Jurnal Ilmiah, vol. 9, no. 1, pp. 62–69, Apr. 2017, doi: 10.33096/ilkom.v9i1.111.62-69.

G. Gunadi and D. Indra Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku dengan Menggunakan Algoritma Apriori dan Frequent Pattern Growth (FP-Growth) : Studi Kasus Percetakan PT. Gramedia,” 2012.

Fitriyani, “Implementasi Algoritma FP-Growth Menggunakan Association Rule pada Market Basket Analysis,” vol. II, no. 1, 2015.

M. I. Ghozali, R. Z. Ehwan, and W. H. Sugiharto, “Analisa Pola Belanja Menggunakan Algoritma FP Growth, Self Organizing Map (SOM) dan K Medoids,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 317–326, Apr. 2017, doi: 10.24176/simet.v8i1.995.

E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 2, pp. 472–478, Jun. 2018, doi: 10.29207/resti.v2i2.280.




DOI: https://doi.org/10.32520/stmsi.v11i2.1762

Article Metrics

Abstract view : 106 times
PDF - 24 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.