Gold Price Prediction Based on Gold.org Data Using the Long Short Term Memory Method

Vincentius Riandaru Prasetyo, Stefan Axel, Juan Timothy Soebroto, David Sugiarto, Septian Ardi Winatan, Senradel Daniel Njudang

Abstract


Gold is one form of precious metal with priceless value in this day and age. Therefore, many people are starting to invest in gold. Someone who wants to invest in gold must pay attention to changes in gold's buying and selling price. One site that can be used as a reference to see changes in the price of buying and selling gold is gold.org. Several factors influence gold price changes, namely changes in the value of the US Dollar exchange rate, the amount of world gold production, and the increase in demand for gold itself. This means that the price of gold tends to be unstable because of frequent changes. The LSTM or Long Short Term Memory method can be implemented to predict gold prices based on previous gold prices. The prediction model built in this study predicts gold price in the future based on 60 last gold price data. Based on the results of accuracy measure, an accuracy of 87.84% was obtained with the value of the difference between the original price and the prediction of 5 and the number of epochs being 100.

Full Text:

PDF

References


M. R. I. Hariwijaya, M. T. Furqon and C. Dewi, "Prediksi Harga Emas dengan Menggunakan Metode Average-Based Fuzzy Time Series," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, pp. 1258-1264, 2020.

E. S. Nurulhuda and Kosasih, "Pengaruh Inflasi, Kurs Dolar AS, dan Suku Bunga (Studi Empiris: PT ANTAM Tbk Tahun 2014-2018)," KINERJA Jurnal Ekonomi dan Bisnis, pp. 71-94, 2019.

F. Kesarditama, Haryadi and Y. V. Amzar, "Pengaruh Inflasi, Nilai Tukar Rupiah per Dollar Amerika, Harga Minyak Mentah Dunia dan Indeks Harga Saham Gabungan terhadap Harga Emas di Indonesia," E-Journal Perdagangan Industri dan Moneter, pp. 55-64, 2020.

L. Wiranda and M. Sadikin, "Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma," Jurnal Nasional Pendidikan Teknik Informatika, pp. 184-196, 2019.

F. D. S. Alhamdani, G. I. Marthasari and C. S. K. Aditya, "Prediksi Harga Emas menggunakan Metode Time Series Long Short - Term Memory Neural Network," REPOSITOR, pp. 375-386, 2021.

Y. D. W. Setianto, "Peramalan Harga Emas Dunia dengan Metode Long-Short Term Memory (LSTM)," Institut Teknologi Sepuluh Nopember, Surabaya, 2021.

W. W. K. Wardani, "Prediksi Harga Saham Syariah menggunakan Metode Recurrent Neural Network-Long Short Term Memory," Universitas Islam Negeri Sunan Ampel, Surabaya, 2021.

V. R. Prasetyo, "Searching Cheapest Product on Three Different E-Commerce using K-Means Algorithm," in 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), Bali, 2018.

D. A. Nasution, H. H. Khotimah and N. Chamidah, "Perbandingan Normalisasi Data untuk Klasifikasi Wine menggunakan Algoritma K-NN," CESS (Journal of Computer Engineering System and Science), vol. 4, no. 1, pp. 78-82, 2019.

M. Hussein and Y. Azhar, "Prediksi Harga Minyak Dunia Dengan Metode Deep Learning," Fountain of Informatics Journal , vol. 6, no. 1, pp. 29-34, 2020.

M. A. Faishol, "Analisis Data Runtun Waktu Prediksi Polusi Udara di Kota Surabaya menggunakan Deep Learning RNN-LSTM," Institut Teknologi Sepuluh Nopember, Surabaya, 2020.

A. Farhah, A. L. Prasasti and M. W. Paryasto, "Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM," Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 524-531, 2021.

W. Aprianti, K. A. Hafizd and M. R. Rizani, "Implementasi Association Rules dengan Algoritma Apriori pada Dataset Kemiskinan," Journal Mathematics and Its Aplications, pp. 145-155, 2017.

V. Ravi, P. Poornachandran and S. KP, "Long Short-Term Memory based Operation Log Anomaly Detection," in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, 2017.

V. R. Prasetyo, H. Lazuardi, A. A. Mulyono and C. Lauw, "Penerapan Aplikasi RapidMiner untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar dengan Metode Regresi Linier," Jurnal TEKNOSI, vol. 7, no. 1, pp. 8-17, 2021.




DOI: https://doi.org/10.32520/stmsi.v11i3.1999

Article Metrics

Abstract view : 450 times
PDF - 215 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.