Online Attendance with Python Face Recognition and Django Framework
Abstract
Full Text:
PDFReferences
R. A. Abumalloh et al., “The impact of coronavirus pandemic (COVID-19) on education: The role of virtual and remote laboratories in education,” Technol. Soc., vol. 67, p. 101728, Nov. 2021, doi: 10.1016/J.TECHSOC.2021.101728.
N. Iivari, S. Sharma, and L. Ventä-olkkonen, “International Journal of Information Management Digital transformation of everyday life – How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care ?,” Int. J. Inf. Manage., vol. 55, p. 102183, 2020, doi: 10.1016/j.ijinfomgt.2020.102183.
U. Jayaraman, P. Gupta, S. Gupta, G. Arora, and K. Tiwari, “Recent development in face recognition,” Neurocomputing, vol. 408, pp. 231–245, 2020, doi: https://doi.org/10.1016/j.neucom.2019.08.110.
K. Mohammed, A. S. Tolba, and M. Elmogy, “Multimodal student attendance management system (MSAMS),” Ain Shams Eng. J., vol. 9, no. 4, pp. 2917–2929, Dec. 2018, doi: 10.1016/J.ASEJ.2018.08.002.
D. Sunaryono, J. Siswantoro, and R. Anggoro, “An android based course attendance system using face recognition,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 3, pp. 304–312, 2021, doi: https://doi.org/10.1016/j.jksuci.2019.01.006.
S. Saraswathi, S. M, Y. Salini, and M. Venkatesh, “Student attendance system using bar code scanner,” in Materials Today: Proceedings, 2021, pp. 1–5, doi: https://doi.org/10.1016/j.matpr.2020.12.898.
S. Pradhan and V. Nanniyur, “Large scale quality transformation in hybrid development organizations – A case study,” J. Syst. Softw., vol. 171, p. 110836, 2021, doi: https://doi.org/10.1016/j.jss.2020.110836.
R. Wei, P. E. D. Love, W. Fang, H. Luo, and S. Xu, “Recognizing people’s identity in construction sites with computer vision: A spatial and temporal attention pooling network,” Adv. Eng. Informatics, vol. 42, p. 100981, 2019, doi: https://doi.org/10.1016/j.aei.2019.100981.
C. Yu and H. Pei, “Face recognition framework based on effective computing and adversarial neural network and its implementation in machine vision for social robots,” Comput. Electr. Eng., vol. 92, p. 107128, 2021, doi: https://doi.org/10.1016/j.compeleceng.2021.107128.
Y. Liu, H. Yu, C. Gong, and Y. Chen, “A real time expert system for anomaly detection of aerators based on computer vision and surveillance cameras,” J. Vis. Commun. Image Represent., vol. 68, p. 102767, 2020, doi: https://doi.org/10.1016/j.jvcir.2020.102767.
Y. Shi, Z. Zhang, K. Huang, W. Ma, and S. Tu, “Human-computer interaction based on face feature localization,” J. Vis. Commun. Image Represent., vol. 70, p. 102740, 2020, doi: https://doi.org/10.1016/j.jvcir.2019.102740.
Z. Zhu and Y. Cheng, “Application of attitude tracking algorithm for face recognition based on OpenCV in the intelligent door lock,” Comput. Commun., vol. 154, pp. 390–397, 2020, doi: https://doi.org/10.1016/j.comcom.2020.02.003.
M. You, X. Han, Y. Xu, and L. Li, “Systematic evaluation of deep face recognition methods,” Neurocomputing, vol. 388, pp. 144–156, 2020, doi: https://doi.org/10.1016/j.neucom.2020.01.023.
J. Liang, H. Tu, F. Liu, Q. Zhao, and A. K. Jain, “3D face reconstruction from mugshots: Application to arbitrary view face recognition,” Neurocomputing, vol. 410, pp. 12–27, 2020, doi: https://doi.org/10.1016/j.neucom.2020.05.076.
E. Planas and J. Cabot, “How are UML class diagrams built in practice? A usability study of two UML tools: Magicdraw and Papyrus,” Comput. Stand. Interfaces, vol. 67, p. 103363, 2020, doi: https://doi.org/10.1016/j.csi.2019.103363.
M. Ozkaya and F. Erata, “A survey on the practical use of UML for different software architecture viewpoints,” Inf. Softw. Technol., vol. 121, p. 106275, 2020, doi: https://doi.org/10.1016/j.infsof.2020.106275.
M. Abbas, R. Rioboo, C.-B. Ben-Yelles, and C. F. Snook, “Formal modeling and verification of UML Activity Diagrams (UAD) with FoCaLiZe,” J. Syst. Archit., vol. 114, p. 101911, 2021, doi: https://doi.org/10.1016/j.sysarc.2020.101911.
R. C. Waldemarin and C. R. G. de Farias, “OBO to UML: Support for the development of conceptual models in the biomedical domain,” J. Biomed. Inform., vol. 80, pp. 14–25, 2018, doi: https://doi.org/10.1016/j.jbi.2018.02.015.
M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429, pp. 215–244, 2021, doi: https://doi.org/10.1016/j.neucom.2020.10.081.
A. Pajaziti, X. Bajrami, and A. Paliqi, “Path Control of Quadruped Robot through Convolutional Neural Networks,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 610–615, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.11.222.
K. Yassin, J. Maher, M. Mehrez, and A. Mohamed, “Optical face detection and recognition system on low-end-low-cost Xilinx Zynq SoC,” Optik (Stuttg)., vol. 217, p. 164747, 2020, doi: https://doi.org/10.1016/j.ijleo.2020.164747.
I.-H. Chen, S.-C. Ho, and M.-B. Su, “Computer vision application programming for settlement monitoring in a drainage tunnel,” Autom. Constr., vol. 110, p. 103011, 2020, doi: https://doi.org/10.1016/j.autcon.2019.103011.
F. Tang et al., “An end-to-end face recognition method with alignment learning,” Optik (Stuttg)., vol. 205, p. 164238, 2020, doi: https://doi.org/10.1016/j.ijleo.2020.164238.
R. Deng et al., “Deep learning-based automatic detection of productive tillers in rice,” Comput. Electron. Agric., vol. 177, p. 105703, 2020, doi: https://doi.org/10.1016/j.compag.2020.105703.
A. Sleem, M. Abdel-Baset, and I. El-henawy, “PyIVNS: A python based tool for Interval-valued neutrosophic operations and normalization,” SoftwareX, vol. 12, pp. 100632 1–7, 2020, doi: https://doi.org/10.1016/j.softx.2020.100632.
G. M. Lunardi, G. M. Machado, V. Maran, and J. P. M. de Oliveira, “A metric for Filter Bubble measurement in recommender algorithms considering the news domain,” Appl. Soft Comput., vol. 97, p. 106771, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106771.
K. Jaskolka, J. Seiler, F. Beyer, and A. Kaup, “A Python-based laboratory course for image and video signal processing on embedded systems,” Heliyon, vol. 5, no. 10, p. e02560 1-9, 2019, doi: https://doi.org/10.1016/j.heliyon.2019.e02560.
J. Zheng et al., “Django: Bilateral coflow scheduling with predictive concurrent connections,” J. Parallel Distrib. Comput., vol. 152, pp. 45–56, 2021, doi: https://doi.org/10.1016/j.jpdc.2021.01.006.
J. Granderson, G. Lin, D. Blum, J. Page, M. Spears, and M. A. Piette, “Integrating diagnostics and model-based optimization,” Energy Build., vol. 182, pp. 187–195, 2019, doi: https://doi.org/10.1016/j.enbuild.2018.10.015.
A. A. Almeida de Macedo Oliveira and R. Hirata, “INACITY - Investigate and Analyze a CITY,” SoftwareX, vol. 15, pp. 100777 1–8, 2021, doi: https://doi.org/10.1016/j.softx.2021.100777.
DOI: https://doi.org/10.32520/stmsi.v12i3.2773
Article Metrics
Abstract view : 582 timesPDF - 197 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.