Application of the Trend Moment Method to Predict Shoes Sales

Gilang Nugroho Syahputra Jarod, Iqbal Kamil Siregar, Endra Saputra

Abstract


The N+2 Fashion store is engaged in selling trend shoes which is located in Air Batu City. Activities in the N+2 Fashion Store include ordering and selling trending shoes. Checking the supply of trending shoes is done by checking them one by one, of course this will make it very difficult for employees to estimate the number of trend shoes they want to order from each trending type of shoe. The large number of trend shoe brands is an obstacle in carrying out business processes which results in wrong prices for these trend shoes. In predicting trend shoes must ensure the sales process, minimize costs and time required. The problem faced by the N+2 Fashion Store is the difficulty in predicting the number of items that must be available for the next period in order to meet customer needs and not cause a buildup of goods in the long term. To overcome this problem, predictions are made using the trend moment method which is a forecasting method used to see trends (data that have increased) based on historical data from one variable using time series data. The results of the research obtained a prediction that in September 2022 there would be 9 pcs of Adidas shoes sold with a MAPE error rate of 16.33%.

Full Text:

PDF

References


A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” J. Infomedia, vol. 3, no. 1, pp. 25–30, 2018, doi: 10.30811/jim.v3i1.625.

A. Prasetia, S. Suriati, and A. Usman, “Implementasi Metode Trend Moment Untuk Prediksi Data Penjualan Sparepart Sepeda Motor,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 73–79, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2354.

M. S. Putra and I. Solikin, “Aplikasi Peramalan Stok Alat Tulis Kantor (Atk) Menggunakan Metode Single Moving Average (SMA)Pada Pt. Sinar Kencana Multi Lestari,” CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. no 2, pp. 236–241, 2019, doi: 10.24114/cess.v6i1.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., vol. 2, no. 2, pp. 37–43, 2017.

A. Basit, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Hasil Panen Padi,” J. Tek. Inform. Kaputama, vol. 4, no. 2, pp. 208–213, 2020.

A. R. Wardani, Y. N. Nasution, and F. D. T. Amijaya, “Aplikasi Logika Fuzzy Dalam Mengoptimalkan Produksi Minyak Kelapa Sawit Di PT. Waru Kaltim Plantation Menggunakan Metode Mamdani,” J. Inform. Mulawarman, vol. 12, no. 2, pp. 94–103, 2017, doi: 10.30872/jim.v12i2.651.

S. Rodiyah, “Implementasi Metode Least Square Dalam Memprediksi Patty Cash di Jank-Jank Wings,” J. Informatics, Inf. Syst. Softw. Eng. Appl. Implementasi, vol. 3, no. 1, pp. 1–10, 2020, doi: 10.20895/INISTA.V2I2.

F. Ahmad, “Penentuan Metode Peramalan Pada Produksi Part New Granada Bowl ST Di PT. X,” J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020.

Yudi, “Peramalan Penjualan Mesin Industri Rumah Tangga Dengan Metode Fuzzy Time Series Ruey Chyn Tsaur,” J. Inform. Kaputama(JIK), vol. 2, no. 1, pp. 53–59, 2018.

I. H. Santi and A. R. Saputra, “Prediksi Jumlah Permintaan Telur Ayam Menggunakan Metode Trend Moment,” J. Ilm. Ilmu Komput., vol. 14, no. 2, pp. 111–119, 2019, doi: 10.30872/jim.v14i2.1986.

I. Yulian, D. S. Anggraeni, and Q. Aini, “Penerapan Metode Trend Moment Dalam Forecasting Penjualan Produk CV. Rabbani Asyisa,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 6, no. 2, pp. 193–200, 2020.

H. D. Budiana, S. Lestanti, and S. N. Budiman, “APLIKASI PREDIKSI STOK POPOK BAYI BERBASIS WEB DENGAN METODE,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 26–30, 2022.

A. Meizar, W. Fahrozi, E. Indra, and M. Saputra, “Analisis Trend Moment Pada Datamining Forecasting Dalam Memprediksi Jumlah Persediaan Obat Herbal,” J. Sist. Inf. dan Ilmu Komput. Prima, vol. 5, no. 2, pp. 103–106, 2022.

D. N. Fitriani and P. A. Rakhma Devi, “Implementasi Metode Trend Moment pada Jumlah Produksi Baju Distro Jatirogo,” Nuansa Inform., vol. 16, no. 1, pp. 134–140, 2022, doi: 10.25134/nuansa.v16i1.5329.

N. Indah, K. Wardhani, I. Hartami, and W. D. Puspitasari, “Sistem Forecasting Penjualan Beras Dengan Menerapkan Metode Trend Moment,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 901–907, 2022, [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/article/view/5780.

L. R. Amalia, W. Ramdhan, and W. M. Kifti, “Penerapan Metode Trend Moment Untuk Memprediksi Jumlah Pertumbuhan Penduduk,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 566–573, 2022, doi: 10.47065/bits.v3i4.1396.

R. N. Nasution, “Sistem Analisis Prediksi Penjualan Vitamin di Apotek Menggunakan Metode Trend Moment,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1356, 2022, doi: 10.30865/jurikom.v9i5.4715.

D. Andayani and A. Setiawan, “TREND MOMENT METHOD IN PRODUCT SALES FORECASTING (CASE STUDY: PT. PIXELINDO REFILL CENTER) Dinda,” UNES J. Inf. Syst., vol. 7, no. 2, pp. 36–47, 2022.

H. D. E. Sinaga and N. Irawati, “Penerapan Trend Moment Untuk Meramalkan Penjualan Produksi Kelapa Sawit Di Kebun Buntu Pane, Kabupaten Asahan,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 6, no. 2, pp. 601–614, 2022.

A. R. Lintang and E. Ekadiansyah, “TREND MOMENT METHOD ON PRINTER SALES AT PT . PIXELINDO REFILL,” UNES J. Sci. Res., vol. 7, no. 2, pp. 53–59, 2022.

M. A. Firmansyah, A. P. Sasmito, and H. Z. Zahro, “Aplikasi Forecasting Penjualan Bahan Bangunan Menggunakan Metode Trend Moment,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 526–533, 2021.

H. P. Hutrim and L. Bachtiar, “Aplikasi Pendukung Keputusan Prediksi Penjualan Air Minum Isi Ulang Menggunakan Metode Trend Moment,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 11, no. 3, pp. 583–592, 2022.

F. M. Putri, “Tingkat Peramalan Penjualan Produk Bordir dan Sulaman Menggunakan Metode Trend Moment,” J. Inform. Ekon. Bisnis, vol. 4, pp. 34–38, 2022, doi: 10.37034/infeb.v4i2.122.




DOI: https://doi.org/10.32520/stmsi.v12i2.2781

Article Metrics

Abstract view : 290 times
PDF - 104 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.