Chicken Disease Detection Based on Fases Image Using EfficientNetV2L Model
Abstract
Full Text:
PDFReferences
D. Yulianto, I. Idris, I. Wasiso, and K. Kusrini, “Sistem Pakar Diagnosis Penyakit Ayam Berbasis Web Menggunakan Certainty Factors,” Res. Comput. Inf. Syst. Technol. Manag., vol. 3, no. 1, p. 16, 2020.
J. Bere, J. Dedy Irawan, and F. Ariwibisono, “SISTEM PAKAR DIAGNOSIS PENYAKIT PADA AYAM MENGGUNAKAN METODE CERTAINTY FACTOR,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 217–224, 2021.
T. S. Desin, W. Köster, and A. A. Potter, “Salmonella vaccines in poultry: Past, present and future,” Expert Review of Vaccines, vol. 12, no. 1. pp. 87–96, 2013.
G. Grilli, F. Borgonovo, E. Tullo, I. Fontana, M. Guarino, and V. Ferrante, “A pilot study to detect coccidiosis in poultry farms at early stage from air analysis,” Biosyst. Eng., vol. 173, pp. 64–70, 2018.
D. Y. Fitri, A. L. D. Agustin, K. Kholik, and M. Janah, “Deteksi Koksidiosis pada Ayam Layer di Sesaot, Kecamatan Narmada, Kabupaten Lombok Barat,” Media Kedokt. Hewan, vol. 32, no. 3, p. 97, 2021.
E. D. Nurcahya, “Klasifikasi Penyakit Ayam Menggunakan Metode Support Vector Machine,” VOLT J. Ilm. Pendidik. Tek. Elektro, vol. 2, no. 1, p. 45, 2017.
A. J. Fatoba and M. A. Adeleke, “Diagnosis and control of chicken coccidiosis: a recent update,” Journal of Parasitic Diseases, vol. 42, no. 4. pp. 483–493, 2018.
Y. O. Adesiji, A. O. Coker, and J. K. Oloke, “Detection of Arcobacter in feces of healthy chickens in Osogbo, Nigeria,” J. Food Prot., vol. 74, no. 1, pp. 119–121, 2011.
A. Mustopa et al., “Ekstraksi Fitur dengan Classifer Random Forest untuk Memprediksi Covid 19 Berdasarkan Hasil Rontgen Thorax Feature Extraction with Random Forest Classifier to Predict Covid 19 Based on Results Thorax X - ray,” J. Sist. Inf., vol. 11, pp. 515–525, 2022.
S. Kumar, S. K. Singh, R. Singh, and A. K. Singh, “Deep Learning Framework for Recognition of Cattle Using Muzzle Point Image Pattern,” in Animal Biometrics, 2017, pp. 163–195.
A. Wijaya et al., “APLIKASI MOBILE DETEKSI PENYAKIT DEMODEKOSIS PADA ANJING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” J. SPEKTRUM, vol. 8, no. 2, pp. 138–148, 2021.
H. Lee, S. Eum, and H. Kwon, “Is Pretraining Necessary for hyperspectral image classification?,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2019, pp. 3321–3324.
H. K. Jeon, S. Kim, J. Edwin, and C. S. Yang, “Sea fog identification from GOCI images using CNN transfer learning models,” Electron., vol. 9, no. 2, 2020.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.
allandclive, “Chicken Disease Image Classification,” Kaggle Repository, 2021. .
H. Mbelwa, D. Machuve, and J. Mbelwa, “Deep Convolutional Neural Network for Chicken Diseases Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 759–765, 2021.
J. Wang, Q. Liu, H. Xie, Z. Yang, and H. Zhou, “Boosted efficientnet: Detection of lymph node metastases in breast cancer using convolutional neural networks,” Cancers (Basel)., vol. 13, no. 4, pp. 1–14, 2021.
M. R. Fauzi, P. Eosina, and D. Primasari, “DETEKSI CORONAVIRUS DISEASE PADA X-RAY DAN CT-SCAN PARU MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,” Junal Sains dan Sist. Inf., vol. 3, no. 2, 2020.
S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,” Kaggle Repository, 2023.
DOI: https://doi.org/10.32520/stmsi.v12i3.2807
Article Metrics
Abstract view : 374 timesPDF - 167 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.