Analysis of Regency/City Human Development Index Data in East Java Through Grouping Using Hierarchical Agglomerative Clustering Method

Roudlotul Jannah Alfirdausy, Nurissaidah Ulinnuha, Moh. Hafiyusholeh

Abstract


The evaluation of human development is typically done using the Human Development Index (HDI), which measures the level of development in terms of various essential aspects of quality of life. In the case of East Java, the HDI is categorized as high. However. the distribution of HDI among the Regencies/Cities in East Java is still uneven. Therefore, it becomes necessary to cluster the districts/cities based on their HDI and the achievement of each indicator contributing to the HDI. Clustering is a data analysis technique used to group similar data together. Hierarchical agglomerative clustering is one of the methods used for this purpose. The aim of this study is to provide a reference for the government to understand the distribution of characteristic groupings among the districts/cities based on their HDI profiles in East Java. The analysis of East Java's HDI data for 2021 revealed that the best method and cluster was obtained using Average Linkage, with a Cophenetic coefficient value of 0.8105891, resulting in two clusters. The cluster with the highest Silhouette coefficient value of 0.6196077 comprised 34 districts/cities, classified as the low cluster, while the high cluster consisted of four cities/regencies.

Full Text:

PDF

References


M. R. Serang, “Pengaruh Pengeluaran Pemerintah, Produktivitas Tenaga Kerja dan Faktor Demografi terhadap Kinerja Pembangunan Manusia di Kabupaten/kota Provinsi Maluku,” Cita Ekon., vol. 11, no. 2, 2017.

K. C. Nawaji, Indeks Pembangunan Manusia Kabupaten Bojonegoro 2021. 2021. [Online]. Available: Uny.ac.id

BPS, “Indeks Pembangunan Manusia Provinsi Jawa Timur 2021,” pp. 1–77, 2022.

J. A. Rosyadah, “Determinan Indeks Pembangunan Manusia (IPM) Provinsi Nusa Tenggara Timur (NTT),” Indones. J. Dev. Econ., vol. 4, no. 1, pp. 1080–1092, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/efficient

M. B. Setiawan and A. Hakim, “Indeks Pembangunan Manusia Indonesia,” J. Econ. 9(1), 18-26, vol. 9(1), pp. 18–26, 2008, [Online]. Available: Uny.ac.id

D. Herawatie, “Perbandingan Algoritma Pengelompokan Non-Hierarki untuk Dataset Dokumen,” Semin. Nas. Apl. Teknol. Inf. Yogyakarta, pp. 11–16, 2014.

J. Gifari, T. A. Adinegara, S. F. H. Arildan, and D. Dewanti, Modul Belajar Bootcamp Data Science & Machine Learning. Bogor: Inspira Pustaka Aksara, 2021.

K. P. Simanjuntak and U. Khaira, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. April, pp. 7–16, 2021, [Online]. Available: https://journal.irpi.or.id/index.php/malcom/article/view/6

M. W. Talakua, Z. A. Leleury, and A. W. Taluta, “Analisis Cluster Dengan Menggunakan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014,” BAREKENG J. Ilmu Mat. dan Terap., vol. 11, no. 2, pp. 119–128, 2017, doi: 10.30598/barekengvol11iss2pp119-128.

R. Rahmati, A. W. Wijayanto, P. Studi, K. Statistik, and P. Sains, “Rizqina Rahmati 1 , Arie Wahyu Wijayanto 2 Program Studi Komputasi Statistik Peminatan Sains Data, Politeknik Statistika STIS,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 73–80, 2021.

N. Buslim and R. P. Iswara, “Pengembangan Algoritma Unsupervised Learning Technique pada Big data Analysis di media sosial sebagai media promosi usaha online bagi masyarakat,” J. Tek. Inform., vol. 12, no. 1, pp. 79–96, 2019, doi: 10.15408/jti.v12i1.11342.

T. Li, A. Rezaeipanah, and E. S. M. Tag El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022, doi: 10.1016/j.jksuci.2022.04.010.

S. T. M. A. K. Wierzchoń, Modern Algorithms of Cluster Analysis. Cham: Springer, 2018.

D. Si, W. Hu, Z. Deng, and Y. Xu, “Fair hierarchical clustering of substations based on Gini coefficient,” Glob. Energy Interconnect., vol. 4, no. 6, pp. 576–586, 2021, doi: 10.1016/j.gloei.2022.01.009.

N. A. N. S. Hendra Perdana, “Pencarian Cluster Optimum Pada Single Linkage, Complete Linkage Dan Average Linkage,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 8, no. 3, pp. 393–398, 2019, doi: 10.26418/bbimst.v8i3.33173.




DOI: https://doi.org/10.32520/stmsi.v12i3.2959

Article Metrics

Abstract view : 406 times
PDF - 88 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.