Naive Bayes Optimization with PSO for Predicting ICU Needs for Covid-19 Patients

Lusiana Dwi Lestari, Iqbal Harifal, Taslim Taslim, Yogi Yunefri, Susi Handayani, Eka Sabna, Kursiah Warti Ningsih

Abstract


Covid-19 is a global pandemic that requires a coordinated worldwide response across all national health and healthcare systems. Identifying patients who are at high risk of contracting the Covid-19 virus is important to increase awareness before patients are further infected by the Covid-19 virus which can cause severe respiratory illness that requires special treatment in intensive care units (ICU). This study aims to predict ICU needs in patients infected with the Covid-19 virus. The value results from the prediction of ICU needs are used as a reference for hospitals to meet ICU needs for patients infected with Covid-19 so that they can increase ICU supplies. The prediction will be carried out using the Naïve Bayes algorithm method with optimization using the PSO algorithm. Based on the results of the study, the population size 20 with an accuracy value of the NBC algorithm was 87.03%, population size 40 with an accuracy value of 87.28, population size 60 obtained an accuracy of 87.13%, population size 80 with an accuracy value of 87.16 % and population size 100, the results obtained are 87.26% so that each population has an increase in the accuracy value.


Full Text:

PDF

References


D. Y. Liliana, H. Maulana, and A. Setiawan, “Data Mining untuk Prediksi Status Pasien Covid-19 dengan Pengklasifikasi Naïve Bayes,” Multinetics, vol. 7, no. 1, pp. 48–53, 2021, doi: 10.32722/multinetics.v7i1.3786.

L. Herlina, W. R. Agustin, and I. K. Mustikarani, “Pengalaman Perawat dalam Memberikan Perawatan End of Life pada Pasien Covid-19 di Ruang ICU Rumah Sakit Umum Daerah Dr. Moewardi,” Univ. Kusuma Husada Surakarta, 2021.

A. K. Amirullah and K. Kartinah, “Penanganan Kecemasan Pasien Survivor Covid-19 Intensive Care Unit: Literature Review,” in Prosiding Seminar Nasional Keperawatan Universitas Muhammadiyah Surakarta 2020 (Profesi Ners XXII), 2020, pp. 8–15.

E. Nurelasari, “Komparasi Algoritma Naive Bayes dengan Support Vector Machine Berbasis Particle Swarm Optimization untuk Prediksi Kesuburan,” Bina Insa. ICT J., vol. 5, no. 1, pp. 61–70, 2018.

Ratino, N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,” J. JUPITER, vol. 12, no. 2, pp. 1–11, 2020.

T. Mardiana, “Optimasi Naïve Bayes dengan Particle Swarm Optimization dan Stratified untuk Prediksi Kredit Macet pada Koperasi,” J. Ris. Inform., vol. 1, no. 1, pp. 43–50, 2018, doi: 10.34288/jri.v1i1.13.

T. S. N. Koeswara, M. S. Mardiyanto, and M. A. Ghani, “Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Atribut untuk Meningkatkan Akurasi Prediksi Diagnosis Penyakit Hepatitis dengan Metode Naive Bayes,” J. Speed – Sentra Penelit. Eng. dan Edukasi, vol. 12, no. 1, pp. 1–10, 2020.

F. Novaldy and A. Herliana, “Penerapan PSO pada Naïve Bayes untuk Prediksi Harapan Hidup Pasien Gagal Jantung,” J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 37–43, 2021, doi: 10.51977/jti.v3i1.396.

F. Ratnawati, “Implementasi Algoritma Naive Bayes terhadap Analisis Sentimen Opini Film pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

K. S. Nugroho, F. Marisa, I. Istiadi, and F. Marisa, “Optimasi Naive Bayes classifier untuk klasifikasi Teks pada e-Government menggunakan Particle Swarm Optimization/ Naive Bayes Classifier Optimization for Text Classification on e-Government using Particle Swarm Optimization,” J. Teknol. dan Sist. Komput., vol. 8, no. January, pp. 21–26, 2020, doi: 10.14710/jtsiskom.8.1.2020.21-26.

D. Evanko, “Optical Imaging of the Native Brain,” Nat. Methods, vol. 7, no. 1, p. 34, 2010, doi: 10.1038/nmeth.f.284.

F. Astuti and R. Taufan, “Sentimen Analisis Vaksinasi Covid - 19 pada Twitter Menggunakan Algoritma Klasifikasi Berbasis PSO/ Sentiment Analysis of Covid-19 Vaccination on Twitter using Classification Algorithms based on PSO,” Sist. J. Sist. InformasiEMASI, vol. 11, pp. 364–376, 2022.

A. Mustopa et al., “Ekstraksi Fitur dengan Classifer Random Forest untuk Memprediksi Covid 19 Berdasarkan Hasil Rontgen Thorax Feature Extraction with Random Forest Classifier to Predict Covid 19 Based on Results Thorax X - ray,” vol. 11, pp. 515–525, 2022.

J. S. Widjaya, D. A. R, and S. R. Puspitasari, “Sistem Prediksi Jumlah Pasien Covid-19 menggunakan Metode Trend Least Square Berbasis Web,” Sist. J. Sist. Inf., vol. 10, pp. 39–51, 2021.

H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, and I. Cholissodin, “Optimasi Naïve Bayes Classifier dengan Menggunakan Particle Swarm Optimization pada Data Iris,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 180, 2017, doi: 10.25126/jtiik.201743251.

T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,” J. Tekno Insentif, vol. 13, no. 1, pp. 26–30, 2019, doi: 10.36787/jti.v13i1.97.

S. Sumarni and S. Rustam, “Klasifikasi Topik Tugas Akhir Mahasiswa menggunakan Algoritma Particle Swarm Optimization dan k-Nearest Neighbor,” Ilk. J. Ilm., vol. 12, no. 2, pp. 168–175, 2020, doi: 10.33096/ilkom.v12i2.604.168-175




DOI: https://doi.org/10.32520/stmsi.v11i3.2094

Article Metrics

Abstract view : 115 times
PDF - 27 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.