Analysis of the k-Means Method in Clustering Acceptance of PKH Aid in Pulau Rakyat Tua Village

Dwi Kurnia Utami, Novica Irawati, Sumantri Sumantri

Abstract


The Family Hope Program (PKH) is a program that provides cash assistance to Very Poor Households (RSTM) which are required to fulfill requirements related to efforts to improve the quality of human resources. In selecting residents to be recipients of the Family Hope Program (PKH) in Pulau Rakyat Tua Village, the problem that often arises is that the provision of Family Hope Program assistance is often considered not to be on target. In addition, errors often occur because the selection is still done manually and requires a long time in selecting participants, which can be influenced by the objective assessment of PKH companions. The research objective is to apply the k-means clustering algorithm in selecting prospective beneficiaries of the Family Hope Program (PKH). The method used uses the application of data mining with the k-means clustering algorithm. Based on the results of applying the k-means clustering algorithm, the results of the system being built can make it easier to select potential recipients of Family Program assistance. The results of the k-means clustering algorithm test produced Cluster 1 in the Eligible category totaling 29 PKH beneficiary data and Cluster 2 in the Ineligible category totaling 1 PKH beneficiary data.

Full Text:

PDF

References


D. J. A. Putra, D. Remawati, and T. Irawati, “Metode K-Means Untuk Pemetaan Persebaran Usaha Mikro Kecil Dan Menengah,” J. Teknol. Inf. dan Komun., vol. 9, no. 2, p. 39, 2021, doi: 10.30646/tikomsin.v9i2.574.

Haryani, D. Nofriansyah, and I. Mariami, “Implementasi Data Mining Untuk Pengelempokan Buku Di Perpustakaan Yayasan Nurul Islam Indonesia Baru Dengan Metode K-Means Clustering,” J. CyberTech, vol. 1, no. 1, pp. 1–12, 2021.

F. Maylani, Sriyanto, and Nosiel, “Implementasi Metode Data Mining Untuk Memprediksi Warna Anak Kucing Pada Proses Pengembangbiakan Kucing Ras Menggunakan Algoritma Support Vector Machine ( SVM ),” Semin. Nas. Has. Penelit. dan Pengabdi. Masy. 2021, pp. 114–125, 2021.

R. Astuti and K. Ukar, “IMPLEMENTASI DATA MINING DENGAN METODE CLUSTERING ALGORITMA K-MEANS UNTUK PENGELOMPOKAN DATA TILANG DI INSTANSI PEMERINTAH,” Media Inform., vol. 20, no. 2, pp. 109–121, 2021.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, 2017.

S. N. Saragih, M. Safii, and D. Suhendro, “Implementasi Metode K-Means pada Hasil Produksi Daging Jenis Ternak,” J. Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 235, 2021, doi: 10.30645/jurasik.v6i1.288.

R. Mbanimara and W. Saputro, “Klasifikasi Pemetaan Penduduk Penerima Bantuan Renovasi Rumah Menggunakan Algoritma K- Means,” J. Pendidik. dan Konseling, vol. 4, no. 5, pp. 637–646, 2022.

A. Nursia, W. Ramdhan, and W. M. Kifti, “Analisis Kelayakan Penerima Bantuan Covid-19 Menggunakan Metode K–Means,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 574–583, 2022, doi: 10.47065/bits.v3i4.1399.

D. Darlinda and J. N. Utamajaya, “Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 167–175, 2022, doi: 10.30865/jurikom.v9i2.3971.

D. T. Yuliana, M. I. A. Fathoni, and N. Kurniawati, “Penentuan Penerima Kartu Indonesia Pintar KIP Kuliah Dengan Menggunakan Metode K-Means Clustering,” J. Focus Action Res. Math. (Factor M), vol. 5, no. 1, pp. 127–141, 2022, doi: 10.30762/f_m.v5i1.570.

Y. Filki, “Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa,” J. Inform. Ekon. Bisnis, vol. 4, no. 4, pp. 166–171, 2022, doi: 10.37034/infeb.v4i4.166.

R. R. Aria, S. Susilowati, and I. R. Rahadjeng, “Data Mining Menentukan Cluster Penerima Program Bantuan dengan Metode K-Means,” Remik Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 7, no. 1, pp. 291–300, 2023.

Y. Kusnadi and M. S. Putri, “Clustering Menggunakan Metode K-Means Untuk Menentukan Prioritas Penerima Bantuan Bedah Rumah (Studi Kasus : Desa Ciomas Bogor),” J. Teknol. Inform. dan Komput., vol. 7, no. 1, pp. 17–24, 2021, doi: 10.37012/jtik.v7i1.498.

L. G. R. Putra and A. Anggrawan, “Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 205–214, 2021, doi: 10.30812/matrik.v21i1.1554.

Y. P. Santoso, M. Marlina, and H. Agung, “Implementasi Metode K-Means Clustering pada Sistem Rekomendasi Dosen Tetap Berdasarkan Penilaian Dosen,” J. Inform. Univ. Pamulang, vol. 3, no. 4, p. 228, 2018, doi: 10.32493/informatika.v3i4.2133.




DOI: https://doi.org/10.32520/stmsi.v12i3.3236

Article Metrics

Abstract view : 286 times
PDF - 99 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.