Application of the Deep Neural Networks Model in Analyzing ChatGPT Application Sentiment

Ahmad Fauzi, Indra Chaidir, Muhammad Iqbal, Ginabila Ginabila

Abstract


AI has been able to intelligently mimic human behavior and has been applied in various contexts, including healthcare for more efficient patient care. One of the prominent trends in AI is advanced language models such as ChatGPT developed by OpenAI. The effectiveness of ChatGPT in finding and fixing bugs in computer code is a subject of debate, depending on the task, training data, and system design. The popularity of social media platforms, particularly Twitter, as a data source for text analysis has increased interest in sentiment analysis. This study explores sentiment towards the ChatGPT application using a dataset of 50,000 tweets. Sentiment analysis is performed using a deep neural network (DNNs) approach to achieve optimal accuracy. Deep learning models are known to have high predictivity and efficient training time. Through this experiment, we aim to gain insight into how the public views ChatGPT in three sentiment categories: positive, negative, and neutral. DNN (Deep Neural Network) is proposed because of its good performance and can shorten the amount of training time. The results with the model used in this study, namely CNN and LSTM both achieve an accuracy value of more than 90%: Where CNN obtains an accuracy value of 91.12% and LSTM obtains an accuracy of 90.84%.

Full Text:

PDF

References


Y. Mintz and R. Brodie, “Introduction to artificial intelligence in medicine,” Minim. Invasive Ther. & Allied Technol., vol. 28, no. 2, pp. 73–81, 2019.

F. Y. Tember, I. Najiyah, T. Informatika, F. T. Informasi, and J. Barat, “Klasifikasi Motif Batik Jawa Barat menggunakan Convolutional Neural Network Classification of West Java Batik Motifs Using Convolutional Neural Network,” vol. 12, pp. 282–292, 2023.

C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” J. Ind. Inf. Integr., vol. 23, no. April, p. 100224, 2021.

M. Aljanabi, M. Ghazi, A. H. Ali, S. A. Abed, and ChatGpt, “ChatGpt: Open Possibilities,” Iraqi J. Comput. Sci. Math., vol. 4, no. 1, pp. 62–64, 2023.

N. M. S. Surameery and M. Y. Shakor, “Use Chat GPT to Solve Programming Bugs,” Int. J. Inf. Technol. Comput. Eng., no. 31, pp. 17–22, 2023.

R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. S. T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 334, 2019.

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K. R. Müller, “Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications,” Proc. IEEE, vol. 109, no. 3, pp. 247–278, 2021.

S. Basodi, C. Ji, H. Zhang, and Y. Pan, “Gradient amplification: An efficient way to train deep neural networks,” Big Data Min. Anal., vol. 3, no. 3, pp. 196–207, 2020.

S. Hadianti et al., “Analisis Sentiment Covid-19 Di Twitter Menggunakan Metode Naive Bayes Dan Svm,” J. Teknol. Inf., vol. 6, no. 1, pp. 58–63, 2022.

W. Gata, S. Surohman, and H. M. Nawawi, “Twitter in analysis of policy sentiments of the omnibus law work creative design,” AIP Conf. Proc., vol. 2714, no. September 2011, 2023.

S. Kamiş and D. Goularas, “Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data,” Proc. - 2019 Int. Conf. Deep Learn. Mach. Learn. Emerg. Appl. Deep. 2019, pp. 12–17, 2019.

I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.

H. M. Nawawi, H. Sutisna, and N. Ichsan, “Sistem Pendukung Keputusan Pemberian Kredit Kendaraan Roda Dua Menggunakan Metode TOPSIS (Studi Kasus PT. Central Sentosa Finance Ciamis),” J. Infokar, vol. 1, no. 23, pp. 301–316, 2019.

H. M. Nawawi, S. Rahayu, J. J. Purnama, and S. I. Komputer, “Algoritma c4.5 untuk memprediksi pengambilan keputusan memilih deposito berjangka,” J. Techno Nuasa Mandiri, vol. 16, no. 1, pp. 65–72, 2019.

Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma K L A Sifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa,” J. ILMU Pengetah. DAN Teknol. Komput., vol. 5, no. 2, pp. 211–220, 2020.




DOI: https://doi.org/10.32520/stmsi.v13i1.3432

Article Metrics

Abstract view : 169 times
PDF - 84 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.