Comparison of Triple Exponential Smoothing and Support Vector Regression Algorithms in Predicting Drug Usage at Puskesmas

Syafira Agnesti, Alwis Nazir, Iwan Iskandar, Elvia Budianita, Iis Afrianty

Abstract


Drug management is important in managing adequate drug supplies in Puskesmas, to avoid errors in controlling existing drug stock inventory, it is necessary to predict the amount of drug usage by comparing Data Mining methods and Machine Learning methods, using the Triple Exponential Smoothing (TES) and Support Vector Regression (SVR) algorithms. Implementation is done using the Python programming language. The data used is Amlodipine 10 mg and Amoxicillin 500 mg drug data with a period of 42 months, from January 2020 - June 2023. This study aims to determine the best algorithm by comparing prediction error rate using the Mean Absolute Percentage Error (MAPE) method. Based on research that has been conducted on Amlodipine 10 mg and Amoxicillin 500 mg drugs with a division of 80% training data and 20% testing data, the Triple Exponential Smoothing algorithm with an additive model produces MAPE values of 10.36% and 17.50% respectively with the "Good" category. While Support Vector Regression algorithm, with RBF kernel, complexity 1.0, and epsilon 0.1 produces MAPE values of 10.31% and 9.38% in the "Good" and "Very Good" categories, respectively. Based on this, it can be concluded that Support Vector Regression algorithm is better at predicting than the Triple Exponential Smoothing algorithm.

Full Text:

PDF

References


Dahlia and Andri, “Implementasi Data Mining untuk Prediksi Persediaan Obat pada Puskesmas Kertapati menggunakan Regresi Linier Berganda,” Jurnal Sistem dan Informatika, vol. 15, no. 2, pp. 95–103, 2020, doi: 10.30864/jsi.v15i2.331.

E. Pratiwi, S. Roza, R. S. Dewi, and N. Sinata, “Gambaran Perencanaan dan Pengadaan Obat Di Puskesmas Rawat Jalan Kabupaten Rokan Hulu Tahun 2018,” Penelitian Farmasi Indonesia, vol. 8, no. September, 2019.

R. H. Maissy Della Danianty, Cucu Suhery, “Prediksi Jumlah Kebutuhan Obat Menggunakan Metode Least Square Berbasis Website (Studi Kasus: Uptd Puskesmas Pontianak Selatan),” Coding Jurnal Komputer dan Aplikasi, vol. 8, no. 2, 2020, doi: 10.26418/coding.v8i2.41495.

D. Suwardiyanto, M. Nur Shodiq, D. Hidayat Kusuma, and T. Oktalita Sari, “Sistem Prediksi Kebutuhan Obat di Puskesmas Menggunakan Metode Least Square,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 75–80, 2019, doi: 10.30591/jpit.v4i1.1085.

L. Rianto, L. Gaol, K. Erwansyah, U. Fatimah, and S. Sitorus, “Prediksi Persediaan Ban Mobil Menggunakan Data Mining Dengan Algoritma Triple Smooting Lambok,” CyberTech, vol. 3, no. 9, pp. 1453–1463, 2020.

A. Arfan and L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” Petir, vol. 13, no. 1, pp. 33–43, 2020, doi: 10.33322/petir.v13i1.858.

M. F. Rifai, Y. D. M. Sudirman, and D. T. Kusuma, “Penerapan Metode Triple Exponential Smoothing Pada Sistem Prediksi Keuntungan Bisnis Ayam Broiler Guna Meningkatkan Pengelolaan Keuangan Peternak,” Kilat, vol. 8, no. 2, pp. 103–111, 2019, doi: 10.33322/kilat.v8i2.551.

S. Madianto, E. Utami, and A. D. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis Pariwisata Jatim Park Batu saat Pandemi Covid-19,” Informatics and Computing (JAIC), vol. 5, no. 7, pp. 58–63, 2021, doi: 10.30871/jaic.v5i1.3139.

K. D. Hartomo, S. Y. Prasetyo, and R. A. Suharjo, “Prediksi Stok dan Pengaturan Tata Letak Barang Menggunakan Kombinasi Algoritma Triple Exponential Smoothing dan FP-Growth,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 5, p. 869, 2020, doi: 10.25126/jtiik.2020751863.

J. Vimala and A. Nugroho, “Forecasting Penjualan Obat Menggunakan Metode Single, Double, Dan Triple Exponential Smoothing ( Studi Kasus : Apotek Mandiri Medika),” IT-Explore, vol. 01, no. 2, pp. 90–99, 2022.

T. Maryana, K. Kusrini, and H. Al Fatta, “Analisis Perbandingan Predisksi Obat Dengan Menggunakan Metode Abc Analisys Dan Svr Pada Aplikasi ‘Morbis,’” Jurnal Teknologi Informasi, vol. 3, no. 2, p. 174, 2019, doi: 10.36294/jurti.v3i2.1016.

M. P. Lestari et al., “Peramalan Pertambahan Pasien Covid-19 Menggunakan Support Vector Regression,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 9497–9507, 2021.

R. N. Puspita, “Perbandingan Metode Double Exponential Smoothing Dan Triple Exponential Smoothing Pada Peramalan Nilai Ekspor Di Indonesia,” Jambura Journal of Probability and Statistics, vol. 3, no. 2, pp. 141–150, 2022, doi: 10.34312/jjps.v3i2.15590.

G. A. N. Pongdatu, E. Abinowi, and W. S, “Peramalan Transaksi Penjualan Dengan Metode Holt-Winter Exponential Smoothing,” Jurnal Ilmiah Teknologi Infomasi Terapan, vol. 6, no. 3, pp. 228–233, 2020, doi: 10.33197/jitter.vol6.iss3.2020.438.

I. W. A. S. Darma, I. P. E. G. Gunawan, and N. P. Sutramiani, “Peramalan Jumlah Kunjungan Wisatawan Menggunakan Triple Exponential Smoothing,” Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), vol. 8, no. 3, p. 211, 2020, doi: 10.24843/jim.2020.v08.i03.p06.

N. Nendi and A. Wibowo, “Prediksi Jumlah Pengiriman Barang Menggunakan Kombinasi Metode Support Vector Regression, Algoritma Genetika dan Multivariate Adaptive Regression Splines,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, p. 1169, 2020, doi: 10.25126/jtiik.2020722441.

R. B. Saputro, K. P. Kartika, and W. D. Puspitasari, “Implementation of the Triple Exponential Smoothing Method for Predicting Helmet Sales,” JOINCS (Journal of Informatics, Network, and Computer Science), vol. 4, no. 2, pp. 30–34, 2022.




DOI: https://doi.org/10.32520/stmsi.v12i3.3499

Article Metrics

Abstract view : 347 times
PDF - 144 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.