Expert System for Diagnosing Metabolic Syndrome at The Tembilahan Regional General Hospital

samsudin samsudin, ilyas ilyas, Zulrahmadi Zulrahmadi, Faizal Tanjung

Abstract


Metabolic syndrome is a disease that is considered trivial and common in society. When sufferers feel the effects of the disease, it will make treatment and healing difficult. To detect this disease early, an expert system application with the forward chaining method is needed so that this application makes it easier to detect disease early. The method for developing this system uses the waterfall method. System analysis and design using UML. System testing uses a black box where system test results are received. Application user testing, using statistical tests with Beta testing with a 95% confidence level, the system can be accepted and trusted. Based on these results, this system can be a solution for early detection of metabolic syndrome.

Full Text:

PDF

References


N. Buza and M. Dizdar, “Classification Of Metabolic Syndrome Patients Using Implemented Expert System,” CMBEBIH, vol. 62, pp. 601–602, 2017, doi: 10.1007/978-981-10-4166-2.

C. S. Yu et al., “Predicting metabolic syndrome with machine learning models using a decision tree algorithm: Retrospective cohort study,” JMIR Med. Informatics, vol. 8, no. 3, pp. 1–17, 2020, doi: 10.2196/17110.

M. G. Sghaireen et al., “Machine Learning Approach for Metabolic Syndrome Diagnosis Using Explainable Data-Augmentation-Based Classification,” Diagnostics, vol. 12, no. 12, pp. 1–21, 2022, doi: 10.3390/diagnostics12123117.

M. Zainudin et al., “Sistem Inferensi Fuzzy Untuk Prediksi Sindrom Metabolik Bagi Penyandang Penyakit Ginjal Kronik,” vol. 8, no. 3, pp. 1407–1416, 2021.

N. W. Hsu, K. C. Chou, Y. T. T. Wang, C. L. Hung, C. F. Kuo, and S. Y. Tsai, “Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing,” J. Transl. Med., vol. 20, no. 1, pp. 1–12, 2022, doi: 10.1186/s12967-022-03379-7.

S. Supadianto, S. Kusumadewi, and L. Rosita, “Fuzzy Expert System Untuk Membantu Diagnosis Awal Sindroma Metabolik,” J. Inform. dan Rekayasa Elektron., vol. 4, no. 1, pp. 30–39, 2021, doi: 10.36595/jire.v4i1.313.

A. F. Setiawan and R. N. Wahidah, “Sistem Pakar Diagnosa Penyakit Tanaman Kedelai Menggunakan Metode Forward Chaining Berbasis Web,” Antivirus J. Ilm. Tek. Inform., vol. 10, no. 2, pp. 64–72, 2016, doi: 10.35457/antivirus.v10i2.165.

M. H. M. M. Ratih Fitri Aini, “Perancangan Sistem Pakar Diagnosa Penyakit Ayam Dengan Metode Forward Chaining,” J I M P - J. Inform. Merdeka Pasuruan, vol. 1, no. 2, pp. 75–79, 2016, doi: 10.37438/jimp.v1i2.21.

Z. W. D. Pratiwi, “Sistem Pakar Diagnosa Stunting Pada Balita Menggunakan Metode Forward Chaining,” vol. 6, no. 2, pp. 401–407, 2020.

M. Silmi, E. A. Sarwoko, and F. Chaining, “Sistem Pakar Berbasis Web Dan Mobile Web Untuk Mendiagnosis Penyakit Darah Pada Manusia Dengan Menggunakan Metode Inferensi Forward Chaining Muhammad,” Masy. Inform., vol. 4, pp. 31–38, 2018.

M. Muafi, A. Wijaya, and V. A. Aziz, “Sistem Pakar Mendiagnosa Penyakit Mata Pada Manusia Menggunakan Metode Forward Chaining,” COREAI J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 1, no. 1, pp. 43–49, 2020, doi: 10.33650/coreai.v1i1.1669.

Y. Wijayana, “Sistem Pakar Kerusakan Hardware Komputer Dengan Metode Backward Chaining Berbasis Web,” Media Elektr., vol. 12, no. 2, p. 99, 2020, doi: 10.26714/me.12.2.2019.99-107.

R. Y. Endra and A. Antika, “Sistem Pakar menggunakan Metode Forward Chaining untuk Diagnosa Penyakit Tanaman Padi berbasis Android,” J. Inform. Univ. Pamulang, vol. 6, no. 4, pp. 811–817, 2021, [Online]. Available: http://jurnal.stmik-mi.ac.id/index.php/jcb/article/view/113

Ashari and A. Y. Muniar, “Penerapan Sistem Pakar Untuk Mendiagnosa Penyakit Pencernaan Dengan Pengobatan Bahan Alami,” Semin. Nas. Sains dan Teknol. 2016, no. November, pp. 2407–1846, 2016.

S. N. Yanti and E. Budiyati, “Aplikasi Sistem Pakar untuk Mendiagnosa Virus Covid-19 pada Manusia Berbasis Web Menggunakan Metode Forward Chaining,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 451, 2021, doi: 10.32493/informatika.v5i4.4944.




DOI: https://doi.org/10.32520/stmsi.v12i3.3516

Article Metrics

Abstract view : 316 times
PDF - 129 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.