Development of Apple Fruit Classification System using Convolutional Neural Network (CNN) MobileNet Architecture on Android Platform
Abstract
Full Text:
PDFReferences
M. Tripathi, "Analysis of convolutional neural network based image classification techniques," Journal of Innovative Image Processing (JIIP), vol. 3, no. 02, pp. 100-117, 2021.
Naranjo-Torres, José, et al. "A review of convolutional neural network applied to fruit image processing." Applied Sciences 10.10 (2020): 3443.
Ratnawati, Luthfiana, and Dwi Ratna Sulistyaningrum. "Penerapan random forest untuk mengukur tingkat keparahan penyakit pada daun apel." Jurnal Sains dan Seni ITS 8.2 (2020): A71-A77.
Razka, Muhammad Hanif, et al. "Klasifikasi Tingkat Kematangan Buah Apel Berdasarkan Fitur Warna Menggunakan Algoritma K-Nearest Neighbor dan Ekstraksi Warna HSV." Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya. Vol. 2. No. 2. 2021.
W. Han et al., "Contextnet: Improving convolutional neural networks for automatic speech recognition with global context," arXiv preprint arXiv:2005.03191, 2020.
L. Chen et al., "Review of image classification algorithms based on convolutional neural networks," Remote Sensing, vol. 13, no. 22, pp. 4712, 2021.
W. Wang et al., "A new image classification approach via improved MobileNet models with local receptive field expansion in shallow layers," Computational Intelligence and Neuroscience, 2020.
Y. D. Zhang, S. C. Satapathy, D. S. Guttery, J. M. Górriz, and S. H. Wang, "Improved breast cancer classification through combining graph convolutional network and convolutional neural network," Information Processing & Management, vol. 58, no. 2, pp. 102439, 2021.
V. R. Allugunti, "A machine learning model for skin disease classification using convolution neural network," International Journal of Computing, Programming and Database Management, vol. 3, no. 1, pp. 141-147, 2022.
Y. Kaya and E. Gürsoy, "A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection," Soft Computing, vol. 27, no. 9, pp. 5521-5535, 2023.
Pratama, Fandy Indra, et al. "Klasifikasi Kematangan Buah Apel Berdasarkan Warna Dan Tekstur Menggunakan Algoritma K-Nearest Neighbor." Jurnal Ilmiah Intech: Information Technology Journal of UMUS 5.1 (2023): 11-18.
P. N. Srinivasu et al., "Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM," Sensors, vol. 21, no. 8, pp. 2852, 2021.
Chen, Junde, et al. "Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning." IET Image Processing 15.5 (2021): 1115-1127.
Tripathi, Milan. "Analysis of convolutional neural network based image classification techniques." Journal of Innovative Image Processing (JIIP) 3.02 (2021): 100-117.
Michele, Aurelia, Vincent Colin, and Diaz D. Santika. "Mobilenet convolutional neural networks and support vector machines for palmprint recognition." Procedia Computer Science 157 (2019): 110-117.
Swasono, Dwiretno Istiyadi, Mohammad Abuemas Rizq Wijaya, and Muhamad Arief Hidayat. "Klasifikasi Penyakit pada Citra Buah Jeruk Menggunakan Convolutional Neural Networks (CNN) dengan Arsitektur Alexnet." INFORMAL: Informatics Journal 8.1 (2023): 68-75.
Pah, Nikotesa Eko Rianto, Sebastianus AS Mola, and Arfan Y. Mauko. "Ekstrasi Ciri Warna Hsv Dan Ciri Bentuk Moment Invariant Untuk Klasifikasi Buah Apel Merah." J-Icon: Jurnal Komputer dan Informatika 9.2 (2021): 142-153.
Paliwang, Andi Asrafil Ardan, et al. "Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network." Sebatik 24.2 (2020): 207-212.
Siswanto, Irwan, Ema Utami, and Suwanto Raharjo. "Klasifikasi tingkat kematangan buah berdasarkan warna dan tekstur menggunakan metode k-nearest neighbor dan nearest mena classifier." Inspiration: Jurnal Teknologi Informasi dan Komunikasi 10.1 (2020): 93-101.
DOI: https://doi.org/10.32520/stmsi.v13i1.3533
Article Metrics
Abstract view : 214 timesPDF - 80 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.