Analysis of LoRa with LoRaWAN Technology Indoors in Polytechnic of Malang Environment

Noprianto Noprianto, Habibie Ed Dien, M. Hasyim Ratsanjani, Muhammad Afif Hendrawan

Abstract


Technology is one of the fields heavily influenced by rapid developments, undergoing significant changes each year. One of the technologies affected is data transmission. Data transmission faces its own challenges, and each region encounters different constraints in their connections, such as the distance of data delivery. In this regard, expanding the data delivery range is crucial to optimize connections and system performance. The use of LoRaWAN for sensor monitoring in IoT devices is designed to transmit data over a wide area with low power consumption and long-term usability, thus overcoming these issues. Data collection in this study utilizes the technique of measuring RSSI (Received Signal Strength Indicator), SNR (Signal-to-Noise Ratio), and LoRa's time interval, considering distance and location parameters at Politeknik Negeri Malang and its surrounding areas. Locations chosen include each floor of the Civil Engineering building to obtain data parameters like RSSI, SNR, and time intervals, which improve when the distance between the transmitting LoRa node and the LoRa gateway gets closer. After conducting tests, it was found that using a 35 dBi antenna outperforms a 10 dBi antenna in data transmission. This was evidenced by the RSSI values approaching 0 from floor 8 to 1 in the Civil Engineering building of Politeknik Negeri Malang. Additionally, the use of a 35 dBi antenna resulted in a 50% faster data transmission compared to the 10 dBi antenna. LoRaWAN technology, particularly The Things Network, can be employed to manage LoRa. However, similar technologies like Chripstack can also be used to manage LoRaWAN more flexibly on the local network

Full Text:

PDF

References


Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee, “A survey on fault diagnosis in wireless sensor networks,” IEEE Access, vol. 6, pp. 11349–11364, Feb. 2018, doi: 10.1109/ACCESS.2018.2794519.

P. K. Singh and A. Sharma, “An intelligent WSN-UAV-based IoT framework for precision agriculture application,” Computers and Electrical Engineering, vol. 100, p. 107912, May 2022, doi: 10.1016/J.COMPELECENG.2022.107912.

A. Fascista, “Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives,” Sensors 2022, Vol. 22, Page 1824, vol. 22, no. 5, p. 1824, Feb. 2022, doi: 10.3390/S22051824.

V. K. Quy, V. H. Nam, D. M. Linh, N. T. Ban, and N. D. Han, “A Survey of QoS-aware Routing Protocols for the MANET-WSN Convergence Scenarios in IoT Networks,” Wirel Pers Commun, vol. 120, no. 1, pp. 49–62, Sep. 2021, doi: 10.1007/S11277-021-08433-Z/METRICS.

H. B. Mahajan and A. Badarla, “Cross-Layer Protocol for WSN-Assisted IoT Smart Farming Applications Using Nature Inspired Algorithm,” Wirel Pers Commun, vol. 121, no. 4, pp. 3125–3149, Dec. 2021, doi: 10.1007/S11277-021-08866-6/METRICS.

K. Haseeb, I. U. Din, A. Almogren, and N. Islam, “An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture,” Sensors 2020, Vol. 20, Page 2081, vol. 20, no. 7, p. 2081, Apr. 2020, doi: 10.3390/S20072081.

A. Srivastava, A. Singh, S. G. Joseph, M. Rajkumar, Y. D. Borole, and H. K. Singh, “WSN-IoT Clustering for Secure Data Transmission in E-Health Sector using Green Computing Strategy,” 2021 9th International Conference on Cyber and IT Service Management, CITSM 2021, 2021, doi: 10.1109/CITSM52892.2021.9588977.

S. Murugesan, S. Ramalingam, and P. Kanimozhi, “Theoretical modelling and fabrication of smart waste management system for clean environment using WSN and IOT,” Mater Today Proc, vol. 45, pp. 1908–1913, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.190.

G. Irin Loretta and V. Kavitha, “Privacy preserving using multi-hop dynamic clustering routing protocol and elliptic curve cryptosystem for WSN in IoT environment,” Peer Peer Netw Appl, vol. 14, no. 2, pp. 821–836, Mar. 2021, doi: 10.1007/S12083-020-01038-6/METRICS.

F. Hamid, E. Ratuloli, A. Setia Budi, and A. Bhawiyuga, “Implementasi Skema Anti-Collision Menggunakan Metode TDMA dan TPSN pada Sistem WSN Berbasis LoRa,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 1, pp. 283–290, Jan. 2021, Accessed: Jul. 05, 2023. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/8463

J. de C. Silva, J. Rodrigues, A. Alberti, P. Šolić, and A. L. L. Aquino, “LoRaWAN — A low power WAN protocol for Internet of Things: A review and opportunities,” 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), 2017.

S. Aguilar, A. Platis, R. Vidal, and C. Gomez, “Energy Consumption Model of SCHC Packet Fragmentation over Sigfox LPWAN,” Sensors 2022, Vol. 22, Page 2120, vol. 22, no. 6, p. 2120, Mar. 2022, doi: 10.3390/S22062120.

M. H. Widianto, A. Sinaga, and M. A. Ginting, “A Systematic Review of LPWAN and Short-Range Network using AI to Enhance Internet of Things,” Journal of Robotics and Control (JRC), vol. 3, no. 4, pp. 505–518, Jul. 2022, doi: 10.18196/JRC.V3I4.15419.

Y. Chen, Y. A. Sambo, O. Onireti, and M. A. Imran, “A Survey on LPWAN-5G Integration: Main Challenges and Potential Solutions,” IEEE Access, vol. 10, pp. 32132–32149, 2022, doi: 10.1109/ACCESS.2022.3160193.

E. U. Ogbodo, A. M. Abu-Mahfouz, and A. M. Kurien, “A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security,” Sensors 2022, Vol. 22, Page 6313, vol. 22, no. 16, p. 6313, Aug. 2022, doi: 10.3390/S22166313.

N. Noprianto, M. A. Hendrawan, and M. H. Ratsanjani, “ANALISIS LORA DALAM KOMUNIKASI NODEMCU DI LINGKUNGAN POLITEKNIK NEGERI MALANG,” Jurnal Sistem Informasi dan Bisnis Cerdas, vol. 15, no. 2, pp. 1–8, Aug. 2022, doi: 10.33005/SIBC.V15I2.9.

K. D. Irianto, “Performance Evaluation of LoRa in Farm Irrigation System with Internet of Things,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 7, no. 4, pp. 383–390, Nov. 2022, doi: 10.22219/KINETIK.V7I4.1551.

F. Dawani et al., “Prototype of Long-Range Radio Communication for e-Nelayan Devices using LoRaWAN,” JURNAL INFOTEL, vol. 10, no. 4, pp. 202–209, Nov. 2018, doi: 10.20895/INFOTEL.V10I4.411.

H. Andre, B. Arma Sugara, R. Fernandez, R. Wahyu Pratama, and J. Teknik Elektro, “Analisis Komunikasi Data Jaringan Nirkabel Berdaya Rendah Menggunakan Teknologi Long Range (LoRa) di Daerah Hijau Universitas Andalas,” Jurnal Ecotipe (Electronic, Control, Telecommunication, Information, and Power Engineering), vol. 9, no. 1, pp. 1–7, Oct. 2022, doi: 10.33019/JURNALECOTIPE.V9I1.2480.

A. R. Batong, P. Murdiyat, and A. H. Kurniawan, “Analisis Kelayakan LoRa Untuk Jaringan Komunikasi Sistem Monitoring Listrik Di Politeknik Negeri Samarinda,” PoliGrid, vol. 1, no. 2, pp. 55–64, Dec. 2020, doi: 10.46964/POLIGRID.V1I2.602.




DOI: https://doi.org/10.32520/stmsi.v13i2.3884

Article Metrics

Abstract view : 40 times
PDF - 12 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
https://section.iaesonline.com/akun-pro-kamboja/https://journals.uol.edu.pk/sugar-rush/http://mysimpeg.gowakab.go.id/mysimpeg/aset/https://jurnal.jsa.ikippgriptk.ac.id/plugins/https://ppid.cimahikota.go.id/assets/demo/https://journals.zetech.ac.ke/scatter-hitam/https://silasa.sarolangunkab.go.id/swal/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/storage/sgacor/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://siipbang.katingankab.go.id/storage_old/maxwin/https://waper.serdangbedagaikab.go.id/public/img/cover/10k/