Backpropagation Design for Authenticating Blood Vessel Patterns of the Back of the Hand Using GLRLM

Fajar M Syam, Muchtar Ali Setyo Yudono, Alun Sujjada

Abstract


Digital security is a critical aspect in the current era of information technology, where access to personal devices and data is often the main target by irresponsible parties. Traditional identification methods such as passwords and PINs are starting to show limitations in addressing increasingly complex security challenges.. The dorsal hand veins offer certain advantages that make them an attractive option for biometric recognition systems because the dorsal hand vein pattern tends to be stable over time, unaffected by external factors such as changes in weather or hygiene. This research aims to develop a system that can identify the blood vessels of the back of the hand as a biometric sign. The approach used involves extracting GLRLM features and applying the Back Propagation Neural Network identification method. The main goal is to achieve a higher level of accuracy than previous studies in the same domain. The identification process involves several stages, starting from image reception, image pre-processing, segmentation, feature extraction, identification, to obtaining images resulting from blood vessel identification. Test results show that the system developed achieved an average success rate of 82.52% based on five different test scenarios. The fourth scenario was proven to provide the highest test accuracy results, namely 87%.

Full Text:

PDF

References


N. I. Syahputri, H. Harahap, R. Siregar, and T. Tommy, “Penyuluhan Pentingnya Two Factor Authentication dan Aplikasinya di Era Keamanan Digital,” J. Pengabdi. Masy. Bangsa, vol. 1, no. 6, pp. 768–773, 2023, doi: 10.59837/jpmba.v1i6.256.

A. M. N. Syams and Suhartini, “Prototipe Sistem Keamanan menggunakan Rfid Dan Keypad Pada Ruang Penyimpanan Di Bank Berbasis Arduino Uno,” J. Ilm. Inform. Komput., vol. 23, no. 2, pp. 144–153, 2021, doi: 10.35760/ik.2018.v23i2.2356.

A. Kamolan and L. Sampebatu, “Rancang Bangun Prototipe Pengaman Ruangan dengan Input Kode PIN dan Multi Sensor Berbasis Mikrokontroller,” J. Ampere, vol. 6, no. 1, p. 22, 2021, doi: 10.31851/ampere.v6i1.5980.

R. Adawiyyah et al., “Pengaruh Keamanan Informasi dan Perkembangan Teknologi di Era Revolusi 4.0 Terhadap Kinerja Perusahaan (Literature Review Manajemen Kinerja),” JIM (Jurnal Ilmu Multidispilin), vol. 2, no. 1, pp. 2829–4599, 2023, [Online]. Available: https://creativecommons.org/licenses/by/4.0/

M. Nur Ikhsan, R. Rahmadewi, T. Elektro, and U. Singaperbangsa Karawang, “Sistem keamanan sepeda motor dengan teknologi biometrik sidik jari menggunakan sensor fingerprint R305,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 7, 2022.

A. Shalsabila and R. Mukhaiyar, “Perancangan Alat Pendeteksi Iris Mata menggunakan Metode Wavelet Filter,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 8, no. 2, p. 433, 2022, doi: 10.24036/jtev.v8i2.118360.

L. Novamizanti, H. Gymnovriza, and E. Susatio, “Pengenalan Wajah Individu berbasis 3D Biometrik,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, p. 41, 2022, doi: 10.26798/jiko.v6i1.182.

A. A. Sasilo, R. A. Saputra, and I. P. Ningrum, “Sistem Pengenalan Suara dengan Metode Mel Frequency Cepstral Coefficients dan Gaussian Mixture Model,” Komputika J. Sist. Komput., vol. 11, no. 2, pp. 203–210, 2022, doi: 10.34010/komputika.v11i2.6655.

M. Masnur, S. Alam, and F. N. Muhammad, “Rancang Bangun Sistem Keamanan Motor dengan Pengenalan Sidik Jari berbasis Arduino Uno,” J. Sintaks Log., vol. 1, no. 1, pp. 1–7, 2021, doi: 10.31850/jsilog.v1i1.671.

F. E. Alfian, G. Pasek, S. Wijaya, and F. Bimantoro, “Identifikasi iris mata menggunakan metode wavelet daubechies dan k-nearest neighbor,” JTIKA, pp. 1–10, 2020, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/

R. Prathivi and Y. Kurniawati, “Sistem Presensi Kelas Menggunakan Pengenalan Wajah dengan Metode Haar Cascade Classifier,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 135–142, 2020, doi: 10.24176/simet.v11i1.3754.

Fernando Paath, Luther Alexander Latumakulita, Christie Montolalu, and Yohanes Langi, “Pengenalan Suara Manusia menggunakan Convolutional Neural Network Studi Kasus Suara Dosen Program Studi Sistem Informasi Universitas Sam Ratulangi,” Konf. Nas. Ilmu Komput., pp. 215–218, 2021.

J. Li, K. Li, G. Zhang, J. Wang, K. Li, and Y. Yang, “Recognition of Dorsal Hand Vein in Small-Scale Sample Database Based on Fusion of ResNet and HOG Feature,” Electron., vol. 11, no. 17, Sep. 2022, doi: 10.3390/electronics11172698.

M. A. Rajab and K. M. Hashim, “Dorsal hand veins features extraction and recognition by correlation coefficient,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 4, pp. 867–874, Aug. 2022, doi: 10.12928/TELKOMNIKA.v20i4.22068.

P. K. Das, P. Jadoun, and S. Meher, “Detection and Classification of Acute Lymphocytic Leukemia,” Proc. 2020 IEEE-HYDCON Int. Conf. Eng. 4th Ind. Revolution, HYDCON 2020, 2020, doi: 10.1109/HYDCON48903.2020.9242745.

M. A. S. Yudono, R. R. Isnanto, and A. Triwiyatno, “Comparison of Cataract Classification System Based on Retinal Blood Vessels Objects and Retinal Optic Disc Using Backpropagation Neural Network,” Int. J. Innov. Eng. Technol., vol. 18, no. 2, pp. 1–8, 2021, doi: 10.13140/RG.2.2.16638.46408.

M. J. IRSYAAD, “Pengenalan Citra Sidik Jari menggunakan Metode Jaringan Saraf Tiruan Backpropagation berbasis Android,” J. uty, pp. 1–13, 2020, [Online]. Available: http://eprints.uty.ac.id

M. Ali Setyo Yudono, E. Ahmad Zaki Hamidi, A. Haris Kuspranoto, and A. De Wibowo Muhammad Sidik, “Jaringan Syaraf Tiruan Perambatan Balik untuk Klasifikasi Covid-19 Berbasis Tekstur Menggunakan Orde Pertama Berdasarkan Citra Chest X-Ray,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 799–808, 2022, doi: 10.25126/jtiik.202295663.

S. W. Chin, K. G. Tay, C. C. Chew, A. Huong, and R. A. Rahim, “Dorsal hand vein authentication system using artificial neural network,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, pp. 1837–1846, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1837-1846.

W. I. Putra, M. Ali, S. Yudono, and A. Sujjada, “Perbandingan Ciri Parameter Tapis Gabor untuk Otentikasi Dorsal Hand Vein menggunakan Artificial Neural Network,” J. Sist. Inf. dan Komput., vol. 12, no. 3, pp. 440–446, 2023.




DOI: https://doi.org/10.32520/stmsi.v13i3.4109

Article Metrics

Abstract view : 129 times
PDF - 45 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.