Breast Cancer Classification based on Ultrasound Images using the Support Vector Machine (SVM) Algorithm
Abstract
Full Text:
PDFReferences
C. M. Annur, “Kanker Payudara, Penyakit Kanker Paling Banyak Dialami Masyarakat Indonesia,” 2022. https://databoks.katadata.co.id/datapublish/2022/10/11/kanker-payudara-penyakit-kanker-paling-banyak-dialami-masyarakat-indonesia
M. A. Rohman, P. Mudjirahardjo, and M. A. Muslim, “Implementasi Filter Gray Level Co-Occurance Matriks Terhadap Sistem Klasifikasi Kanker Payudara Dengan Metode Convolutional Neural Network,” Transmisi, vol. 23, no. 4, pp. 160–168, 2021, doi: 10.14710/transmisi.23.4.160-168.
“Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan,” Kementerian Kesehatan RI, 2022. https://www.kemkes.go.id/article/view/22020400002/kanker-payudara-paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan.html#:~:text=Data Globocan tahun 2020%2C jumlah,dari 22 ribu jiwa kasus
“American Cancer Society Recommendations for Prostate Cancer Early Detection,” American Cancer Society, 2021. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html
American Cancer Society, “Breast Cancer Early Detection and Diagnosis American Cancer Society Recommendations for the Early Detection of Breast Cancer,” Am. Cancer Soc., pp. 1–55, 2016, [Online]. Available: https://www.cancer.org/content/dam/CRC/PDF/Public/8579.00.pdf
R. Suhendra, I. Juliwardi, and S. Sanusi, “Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine,” J. Teknol. Inf., vol. 1, no. 1, pp. 29–35, 2022, doi: 10.35308/.v1i1.5520.
Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022, doi: 10.32736/sisfokom.v11i3.1502.
A. G. Sooai, P. A. Nani, N. M. R. Mamulak, C. O. Sianturi, S. C. Sianturi, and A. H. Mondolang, “Klasifikasi Citra Daun Anggur Menggunakan SVM Kernel Linear,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 1, p. 19, 2023, doi: 10.31328/jointecs.v8i1.4496.
H. Imaduddin, B. A. Hermansyah, and F. A. Salsabilla B, “Comparison of Support Vector Machine and Decision Tree Methods in the Classification of Breast Cancer,” Cybersp. J. Pendidik. Teknol. Inf., vol. 5, no. 1, p. 22, 2021, doi: 10.22373/cj.v5i1.8805.
L. M. Wisudawati, “Klasifikasi Tumor Jinak Dan Tumor Ganas Pada Citra Mammogram Menggunakan Gray Level Co-Occurrence Matrix (Glcm) Dan Support Vector Machine (Svm),” J. Ilm. Inform. Komput., vol. 26, no. 2, pp. 176–186, 2021, doi: 10.35760/ik.2021.v26i2.4897.
H. Arwoko, “Klasifikasi Kanker Payudara pada Citra Ultrasound Menggunakan Fitur Koefisien Discrete Cosine Transform (DCT),” Pros. HUBISINTEK, vol. 2, no. 1, p. 451, 2022.
A. D. Achmad, “Klasifikasi Breast Cancer Menggunakan Metode Logistic Regression,” Jtriste, vol. 9, no. 1, pp. 143–148, 2022.
G. T. Situmorang, A. W. Widodo, and M. A. Rahman, “Penerapan Metode Gray Level Co-Occurrence Matrix ( GLCM ) untuk ekstraksi ciri pada telapak tangan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4710–4716, 2019.
H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009, doi: 10.1109/TKDE.2008.239.
S. T. Jishan, R. I. Rashu, N. Haque, and R. M. Rahman, “Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique,” Decis. Anal., vol. 2, no. 1, p. 1, 2015, doi: 10.1186/s40165-014-0010-2.
A. Hanafi, A. Adiwijaya, and W. Astuti, “Klasifikasi Multi Label pada Hadis Bukhari Terjemahan Bahasa Indonesia Menggunakan Mutual Information dan k-Nearest Neighbor,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 357–364, 2020, doi: 10.32736/sisfokom.v9i3.980.
J. Zhao, Y. Zhou, X. Zhang, and L. Chen, “Part mutual information for quantifying direct associations in networks,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 18, pp. 5130–5135, 2016, doi: 10.1073/pnas.1522586113.
J. Z. Liang, “SVM multi-classifier and web document classification,” Proc. 2004 Int. Conf. Mach. Learn. Cybern., vol. 3, pp. 1347–1351, 2004, doi: 10.1109/icmlc.2004.1381982.
M. N. Rakhmasari, “Implementasi Metode Support Vector Machine (SVM) pada Klasifikasi dan Karakterisasi Tingkat Kedalaman Kemiskinan Provinsi Jawa Timur,” Univ. Islam Negeri malang, pp. 1–71, 2022.
“Scikit-Learn Documentation - SVM,” Scikit-Learn. https://scikit-learn.org/stable/modules/svm.html
A. Zeputra and F. Utaminingrum, “Perbandingan Akurasi untuk Deteksi Pintu berbasis HOG dengan Klasifikasi SVM menggunakan Kernel Linear , Radial Basis Function dan Polinomial pada Raspberry Pi,” … Teknol. Inf. dan Ilmu Komput. e …, vol. 5, no. 11, pp. 4746–4757, 2021, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10090%0Ahttp://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/10090/4483
Z. Liu and H. Xu, “Kernel parameter selection for Support Vector Machine classification,” J. Algorithms Comput. Technol., vol. 8, no. 2, pp. 163–177, 2014, doi: 10.1260/1748-3018.8.2.163.
A. N. Khobragade, M. M. Raghuwanshi, and L. Malik, “Evaluating Kernel Effect on Performance of SVM Classification using Satellite Images,” Int. J. Sci. Eng. Res., vol. 7, no. 3, pp. 742–748, 2016.
Kusnawi, M. A. F. E. Putra, and J. Ipmawati, “Prediksi harga bahan pokok dengan menggunakan metode forcasting ARIMA melalui open data Kabupaten Sumedang,” J. Sist. Inf., vol. 12, no. 2, pp. 293–307, 2023.
DOI: https://doi.org/10.32520/stmsi.v13i4.4113
Article Metrics
Abstract view : 182 timesPDF - 64 times
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.