Revealing the Relationship of Batik Motifs Using Convolutional Neural Network

Abdul Mahatir Najar, Maulidyani Abu, Rina Ratianingsih, Agus Indra Jaya

Abstract


This study explores the use of Convolutional Neural Network to identify and classify regional batik motifs, a significant aspect of Indonesian cultural heritage. The CNN model was optimized with Adam optimizer and used to extract distinctive features from the batik patterns. Subsequently, a hierarchical clustering method was employed to construct a relationship tree depicting the link between batik motifs based on their region. The research findings demonstrate that the CNN model effectively classifies batik motifs with an accuracy of up to 88%. The study provides insights into the intricate connections between regional batik designs and contributes to the preservation and understanding of Indonesia's cultural heritage.

Full Text:

PDF

References


E. Steelyana, “Batik, A Beautiful Cultural Heritage that Preserve Culture and Supporteconomic Development in Indonesia,” Binus Bus. Rev., vol. 3, no. 1, p. 116, May 2012, doi: 10.21512/bbr.v3i1.1288.

Lulus Sugeng Triandika, “The Uniqueness of Culture: Acculturation between Religion and Local Culture on Indonesian Sumenep Batik Motifs,” Fikri J. Kaji. Agama Sos. Dan Budaya, vol. 8, no. 1, pp. 41–53, May 2023, doi: 10.25217/jf.v8i1.3180.

I. Nurhaida, A. Noviyanto, R. Manurung, and A. M. Arymurthy, “Automatic Indonesian’s Batik Pattern Recognition Using SIFT Approach,” Procedia Comput. Sci., vol. 59, pp. 567–576, 2015, doi: 10.1016/j.procs.2015.07.547.

A. A. Aldino, A. A. Mawy, and D. Darwis, “Comparison of k-nearest neighbor and Naïve Bayes algorithm for identification of Lampung Batik siger and Sembagi motifs,” presented at the INTERNATIONAL CONFERENCE ON ENGINEERING AND COMPUTER SCIENCE (ICECS) 2022: The Use of Innovative Technology in Accelerating Problems Sustainable Development, Bandar Lampung City, Indonesia, 2024, p. 030004. doi: 10.1063/5.0207292.

A. H. Rangkuti, Z. E. Rasjid, and D. J. Santoso, “Batik Image Classification Using Treeval and Treefit as Decision Tree Function in Optimizing Content Based Batik Image Retrieval,” Procedia Comput. Sci., vol. 59, pp. 577–583, 2015, doi: 10.1016/j.procs.2015.07.551.

M. A. Rasyidi and T. Bariyah, “Batik pattern recognition using convolutional neural network,” Bull. Electr. Eng. Inform., vol. 9, no. 4, pp. 1430–1437, Aug. 2020, doi: 10.11591/eei.v9i4.2385.

I. N. Switrayana, S. Hadi, and N. Sulistianingsih, “A Robust Gender Recognition System using Convolutional Neural Network on Indonesian Speaker,” SISTEMASI, vol. 13, no. 3, p. 1008, May 2024, doi: 10.32520/stmsi.v13i3.3698.

F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” SISTEMASI, vol. 10, no. 3, p. 618, Sep. 2021, doi: 10.32520/stmsi.v10i3.1248.

M. Masparudin, I. Fitri, and S. Sumijan, “Development of Apple Fruit Classification System using Convolutional Neural Network (CNN) MobileNet Architecture on Android Platform,” SISTEMASI, vol. 13, no. 1, p. 230, Jan. 2024, doi: 10.32520/stmsi.v13i1.3533.

J. Tristanto, J. Hendryli, and D. Erny Herwindiati, “Classification of Batik Motifs Using Convolutional Neural Networks,” SSRN Electron. J., 2018, doi: 10.2139/ssrn.3258935.

S. Ariessaputra, V. H. Vidiasari, S. M. A. Sasongko, B. Darmawan, and S. Nababan, “Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm,” JOIV Int. J. Inform. Vis., vol. 8, no. 1, p. 38, Mar. 2024, doi: 10.62527/joiv.8.1.1386.

F. Y. Tember and I. Najiyah, “Classification of West Java Batik Motifs Using Convolutional Neural Network,” SISTEMASI, vol. 12, no. 2, p. 282, May 2023, doi: 10.32520/stmsi.v12i2.2259.

D. G. T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification Using Convolutional Neural Network with Data Improvements,” JOIV Int. J. Inform. Vis., vol. 6, no. 1, p. 6, Mar. 2022, doi: 10.30630/joiv.6.1.716.

S. Auliaddina and T. Arifin, “Use of Augmentation Data and Hyperparameter Tuning in Batik Type Classification using the CNN Model,” SISTEMASI, vol. 13, no. 1, p. 114, Jan. 2024, doi: 10.32520/stmsi.v13i1.3395.

C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA: IEEE, Jun. 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

T. Guo, J. Dong, H. Li, and Y. Gao, “Simple convolutional neural network on image classification,” in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, Beijing, China: IEEE, Mar. 2017, pp. 721–724. doi: 10.1109/ICBDA.2017.8078730.




DOI: https://doi.org/10.32520/stmsi.v13i5.4480

Article Metrics

Abstract view : 102 times
PDF - 25 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.