IMPLEMENTASI PENGGUNAAN OPENCV PADA FACE RECOGNITION UNTUK SISTEM PRESENSI PERKULIAHAN MAHASISWA

Banu Santoso, Ryan Putranda Kristianto

Abstract


Abstrak— Data presensi perkuliahan pada perguruan tinggi menjadi suatu acuan dalam menunjukkan kredibilitas setiap mahasiswa yang digunakan oleh para dosen sebagai data untuk pemberian nilai mahasiswa sekaligus sebagai bahan evaluasi keberhasilan kegiatan belajar mengajar dalam perkuliahan, namun ada beberapa contoh kasus, terkait dengan data presensi mahasiswa yang saat ini marak terjadi pada dunia pendidikan atau perkuliahan adalah fenomena “Titip Absen”. Selain itu, masalah lainnya juga muncul dari pihak dosen dan pegawai tata usaha yakni kesulitan dalam memonitor kehadiran mahasiswa serta upaya memvalidasi data presensi karena jumlah data mahasiswa yang begitu banyak. Oleh karena itu dalam penelitian ini diajukan suatu sistem untuk mengurangi tingkat kecurangan dalam pengisian daftar presensi dan efektivitas pengolahan data mahasiswa dengan menggunakan sistem penerapan metode Face Recognition berbasis Open CV dengan metode Haar Cascade Classifier dan Local Binary Patterns Histograms (LBPH). Hasil penelitian Face Recognition ini berhasil mendeteksi apabila semua pengguna yang dipresensikan telah terdaftar ke sistem, dengan jarak jangkauan optimal Face Recognition agar terdeteksi sampai 150 cm. Sedangkan Face Recognition tidak berhasil terdeteksi apabila ada obstacle menutupi objek wajah dan jarak melebihi dari 150 cm.

 

Full Text:

PDF

References


A. P. Raharjo, A. B. P. Negara, and N. Safriadi, “Sistem Informasi Kehadiran Dosen dan Mahasiswa Menggunakan Sidik Jari pada Program Studi Informatika Universitas Tanjungpura,” J. Sist. dan Teknol. Inf., vol. 6, no. 2, p. 76, 2018.

Salhazan Nasution, “PRESENSI ONLINE MENGGUNAKAN RFID PADA KARTU MAHASISWA,” Intecoms J. Inf. Technol. Comput. Sci., vol. 1, no. 32, pp. 19–27, 2018.

A. A. Sukmandhani and I. Sutedja, “Face Recognition Method for Online Exams,” Proc. 2019 Int. Conf. Inf. Manag. Technol. ICIMTech 2019, vol. 1, no. August, pp. 175–179, 2019.

N. Boyko, O. Basystiuk, and N. Shakhovska, “Performance Evaluation and Comparison of Software for Face Recognition, Based on Dlib and Opencv Library,” Proc. 2018 IEEE 2nd Int. Conf. Data Stream Min. Process. DSMP 2018, pp. 478–482, 2018.

M. S. I. Sameem, T. Qasim, and K. Bakhat, “Real time recognition of human faces,” ICOSST 2016 - 2016 Int. Conf. Open Source Syst. Technol. Proc., pp. 62–65, 2017.

R. Lodha, S. Gupta, H. Jain, and H. Narula, “Bluetooth Smart Based Attendance Management System,” Procedia Comput. Sci., vol. 45, pp. 524–527, 2015.

S. A. M. Noor, N. Zaini, M. F. A. Latip, and N. Hamzah, “Android-based attendance management system,” in 2015 IEEE Conference on Systems, Process and Control (ICSPC), 2015, pp. 118–122.

M. Benny Chaniago and A. Junaidi, “SMS Gateway and barcode technology for presence of students in SMK Unggulan Terpadu PGII Bandung: A case study,” Proc. 2016 4th Int. Conf. Cyber IT Serv. Manag. CITSM 2016, pp. 2–5, 2016.

N. Dhanalakshmi, S. G. Kumar, and Y. P. Sai, “Aadhaar Based Biometric Attendance System Using Wireless Fingerprint Terminals,” in 2017 IEEE 7th International Advance Computing Conference (IACC), 2017, pp. 651–655.

Z. Vantová, J. Paralič, and V. Gašpar, “Mobile application for creating presence lists,” in 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017, pp. 223–228.

G. Chandan, A. Jain, H. Jain, and Mohana, “Real Time Object Detection and Tracking Using Deep Learning and OpenCV,” Proc. Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2018, no. Icirca, pp. 1305–1308, 2018.

W. Sriratana, S. Mukma, N. Tammarugwattana, and K. Sirisantisamrid, “Application of the OpenCV-Python for Personal Identifier Statement for Personal Identifier Statement,” 2018 Int. Conf. Eng. Appl. Sci. Technol., pp. 1–4, 2018.

A. F. S. Lino, B. C. R. Silva, D. P. C. Rocha, G. P. Furriel, and W. P. Calixto, “Performance of haar and LBP features in cascade classifiers to whiteflies detection and counting,” 2017 Chil. Conf. Electr. Electron. Eng. Inf. Commun. Technol. CHILECON 2017 - Proc., vol. 2017-Janua, pp. 1–6, 2017.

H. Sharma, S. Saurav, S. Singh, A. K. Saini, and R. Saini, “Analyzing impact of image scaling algorithms on viola-jones face detection framework,” 2015 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2015, pp. 1715–1718, 2015.

C. Li, Z. Qi, N. Jia, and J. Wu, “Human face detection algorithm via Haar cascade classifier combined with three additional classifiers,” ICEMI 2017 - Proc. IEEE 13th Int. Conf. Electron. Meas. Instruments, vol. 2018-January, pp. 483–487, 2017.

X. M. Zhao and C. B. Wei, “A real-time face recognition system based on the improved LBPH algorithm,” 2017 IEEE 2nd Int. Conf. Signal Image Process. ICSIP 2017, vol. 2017-Janua, pp. 72–76, 2017.




DOI: https://doi.org/10.32520/stmsi.v9i2.822

Article Metrics

Abstract view : 200 times
PDF - 100 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.