
Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2540

Static Analysis-based Detection of Android Malware using

Machine Learning Algorithms

1
Omar Emad Saied*,

 2
Karam H. Thanoon

1
Department of Software, College of Computer Science and Mathematics, University of Mosul, Iraq

2
Department of Cyber Security, College of Computer Science and Mathematics, University of Mosul,

Iraq
*e-mail: 1Omaremad_gold@uomosul.edu.iq, 2karamhatim@uomosul.edu.iq

(received: 5 July 2025, revised: 19 July 2025, accepted: 20 July 2025)

Abstract
The rapid growth of Android applications has led to increased security threats, making malware

detection a critical concern in cybersecurity. This research proposes a static analysis-based technique

that employs machine learning for Android malware detection. The proposed method utilizes three

classification algorithms: Support Vector Machine (SVM), Random Forest, and Decision Tree. The

tool extracts static permission features from APK files to evaluate their effectiveness. The dataset

consists of 400 Android applications (200 benign and 200 malicious), which were analyzed using the

three machine learning models. Their performance was evaluated and compared using accuracy ,

precision, recall, and F1-score. The Random Forest model achieved the highest accuracy. The results

demonstrate that static analysis combined with a robust classification model can effectively identify

malicious applications with a high degree of accuracy. Although the tool is reliable in detecting

Android malware, it has limitations in handling obfuscated and dynamic threats. Future research

could focus on integrating dynamic analysis techniques to improve detection accuracy and enhance

resistance to evasion techniques.

Keywords: android malware, static analysis, machine learning, support vector machine, random

forest, decision tree, cybersecurity

1 Introduction

Software security involves protecting software from various types of malware and is a crucial

aspect of cybersecurity. Initially, hacking was mainly considered a prank targeting victims’ machines.

However, with the continuous evolution of internet services the motivation behind cyberattacks

shifted from mere amusement to financial gain and other valuable assets [1].

Mobile devices have become essential for various services such as communication, entertainment,

financial transactions, and education. Software applications are now deeply integrated into daily life,

influencing critical domains like traffic control, aviation, and self-driving cars [2]. For many people,

life without these devices is unimaginable.
Android is one of the most popular and widely used mobile operating systems, consistently evolving

and gaining popularity. Modern applications and devices such as smartphones, laptops, printers, and

scanners have introduced several security challenges [3]. According to StatCounter, Android

dominated the global smartphone operating system market in 2023, accounting for approximately

71.74% [4].

Because of its open-source nature and frequent updates by a vast developer community, Android has

become a primary target for cyberattacks, mainly through malicious applications (malware). Android

malware has evolved rapidly, adopting sophisticated techniques such as encryption and obfuscation to

conceal its malicious intent.

Attackers can be individuals or organized groups, including former intelligence operatives or

independent hackers. In general, hackers are categorized into two main groups: black-hat hackers,

who exploit vulnerabilities for malicious purposes, and white-hat hackers, who work to improve

system security [5].

mailto:1Omaremad_gold@uomosul.edu.iq
mailto:2karamhatim@uomosul.edu.iq

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2541

Static analysis is one of the primary methods used to detect malware on Android devices. It involves

extracting permission features from an APK application to identify malicious behavior, as shown in

Figure 1. However, its major drawback is vulnerability to techniques such as code obfuscation and

polymorphism, which complicate feature extraction [6].

Static and dynamic analysis operate differently but share the same goal of detecting malicious

behavior. For instance, if an application uses location permissions to transmit a user’s geolocation to a

third-party server, both static and dynamic analysis would typically classify this as a privacy leakage

case [7].

Figure 1 Taxonomy of Android malware features [8]

To address these challenges, various malware detection techniques have been developed, including

static, dynamic, and hybrid approaches. Static analysis is considered efficient because it examines an

application’s code and structure without executing it [9]. By inspecting permissions, API calls, and

control flow graphs, static analysis provides valuable information for identifying malicious

applications. Its main advantage lies in detecting vulnerabilities before application installation and

execution.

However, static analysis struggles with highly obfuscated or polymorphic malware, where attackers

use techniques like variable renaming, junk code insertion, or code encryption to hide malicious intent

[10].

One of the major problems related to detecting malware using just static analysis is their advanced

evasion techniques, including obfuscation and polymorphism. Obfuscation makes the code of an

application harder to understand. For example, it can be done through renaming a variable, inserting

superfluous or misleading code, or encrypting parts of the application’s code, which will then only be

decrypted at runtime [8]. static feature extraction becomes ineffective and is often misclassified.

Similarly, polymorphism also provides malware to modify its structure or signature on each infection

while maintaining its malicious functionality, thereby drastically reducing the effectiveness of

signature-based or static analysis methods [11].The above confer wishes the combination of static and

dynamic techniques in the future to address the issue of such malware evasion and improve detection

accuracy.

Recent research has focused on enhancing static analysis by integrating machine learning techniques,

which can identify patterns and anomalies in application code more effectively.

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2542

This research aims to improve Android malware detection using static analysis combined with

machine learning algorithms. Specifically, it investigates critical static features of permissions to

develop a robust and scalable detection system capable of identifying both known and new malware

variants.

2 RELATED WORK

Malware analysis has gained increasing attention due to the growing security threats targeting the

Android system. Various methods have been proposed to detect malicious applications, including

machine learning, static analysis, and dynamic analysis. This section discusses previous studies,

highlighting their contributions, strengths, and weaknesses, in order to identify research gaps and

improve Android security.

Malware analysis aims to provide sufficient information to assess the severity of malicious software.

It involves examining malware to understand its behavior, evolution, targeted victims, and other

relevant aspects [12]. The static analysis presented in [13] examines the structure of executable files

without executing them, such as in the case of the Lime Worm Ransomware. This method involves

extracting information such as hash codes, analyzing PE files using PeStudio, and identifying

suspicious string patterns. Signature verification is performed using VirusTotal to determine whether

a file is malicious.

There are many studies that employ static analysis to develop machine learning models capable of

differentiating between benign and malicious applications. A number of these studies focused on

permission-based classification, opcode sequence detection, and API usage analysis. Reverse

engineering was also done to access internal components of APK files (like .dex, resources, and

manifest).

According to the paper in [14], a new mechanism for feature selection is suggested independent of

dynamic analysis, various different features such as API calls and permissions are extracted and

classified using machine learning techniques. The primary aim of this method is to enhancement

detection accuracy by lowering number of features. In a similar context, the paper in [15] applies

static analysis to extract and analyze the features of the application before execution by examining

APK files. Dimensionality reduction is achieved through factor Analysis of permissions, API calls,

opcodes, and textual data from the manifest file followed by Broad Learning to improve prediction

accuracy. The The research based in [16] uses static code from an application in order to extract

function call graphs. Merging this with dynamic features, this approach significantly improves

accuracy detection, especially against dynamically loaded code and obfuscation, which pose major

challenges in detecting malware.

In addition, in research [17] collects features such as permissions, API calls, and URLs, then

leverages large language models (LLMs) to analyze relationships between features, accuracy

detection is enhanced, and detailed interpretability reports are provided. In [18], detecting riskware by

analyzing APK files without execution. Extracting features includes permissions, API calls, manifest

entries, and coding structures. These features help to identify high-risk permissions, sensitive API

access, dynamic code loading, and obfuscation patterns, which are then fed into machine learning

models for riskware classification.

3 Dataset Creation

A custom-built dataset of Android applications was specifically constructed for this study for

enable the analysis of malicious behavior and detection. This dataset combines critical features such

as application permissions, which play an important role in supporting the process of classification. It

was organized to arranged to make it compatible with machine learning techniques.

The Kronodroid dataset from [14] is used for static analysis, where features such as API calls,

permissions, and opcode instructions are extracted from the applications without executing. Feature

selection techniques were used to find the most influential factors that cause harmful activity to

improve classification accuracy in static analysis. Moreover, this method decreases the number of

features for classification which enhances processing efficiency.

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2543

Android applications, as shown in Table 1, were downloaded from trusted sources such as the Google

Play Store [19], Uptodown, and APKPure for benign samples. Malicious applications were obtained

from reputable global platforms that legally provide malware samples for research purposes,

supporting the training and development of Android malware detection tools. Key sources included

AndroZoo [15] and VirusTotal [10], which supplied malicious APK samples.

The resulting dataset was balanced, consisting of an equal number of benign and malicious

applications. This balanced composition was specifically designed to facilitate the extraction of

permission-related features, thereby enabling accurate classification between benign and malicious

applications.

Table 1 Source of Benign and Malicious APK

Source Name Website URL Label Number of Samples

Google play https://play.google.com/store

Benign 55

APKpure https://apkpure.com/en/ Benign 75

Uptodown https://en.uptodown.com/ Benign 70

Vrusetotal https://www.virustotal.com/gui/home/upload

Malicious 88

MalwareBazaar https://bazaar.abuse.ch/ Malicious 68

AndroZoo https://androzoo.uni.lu/ Malicious 44

Total 400

4 Methodology

The primary objective of this research is to analyze and detect Android malware applications

based on the permissions requested by an application without executing it, as illustrated in Figure 2.

To achieve this goal, malware was classified according to its infection mechanisms, enabling the

identification of the types of malware that the proposed methodology can detect at the permission

level.

Figure 2 Static analysis design

Initially, the Android application file is processed through the proposed tool, which performs static

analysis by examining the application’s code and manifest files without executing it, as illustrated in

Figure 3. The static analysis focuses on extracting requested permissions features, which are essential

indicators for identifying malicious behaviors. To enhance detection accuracy , these extracted

features undergo feature selection techniques to identify the most discriminative attributes for

malware classification. The study in [20] supports this approach by analyzing malicious files to

determine the most significant behavioral patterns and infection strategies, which aids in improving

feature-based classification. All selected features are systematically stored in an Excel sheet for

further processing and model training.
In the subsequent step, the extracted features are fed into a machine learning (ML) algorithm to

classify the application as either benign or malicious. Essential machine learning techniques,

including classification, regression analysis, clustering, feature engineering, and deep learning, are

employed to enhance prediction accuracy and improve classification performance [21]. To further

optimize classification results, a feature selection technique is applied to identify the most relevant

features. For instance, as demonstrated in [22], an SVM-based model achieved highly accurate

https://apkpure.com/en/
https://en.uptodown.com/
https://bazaar.abuse.ch/
https://androzoo.uni.lu/

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2544

ransomware detection, where static features yielded an accuracy of 81%, while dynamic features

achieved 100% accuracy.

Figure 3 The proposed tool works

5 Experimental Setup and Static Feature Extraction Process

The experiments were conducted using Android Studio Ladybug 2024.2.1 Patch 3 on a Windows

11 Home 64-bit system. Static analysis was employed for malware detection, and the implementation

was performed in Python using the following libraries: Androguard for APK file analysis, ADB

(Android Debug Bridge) for accessing application files, and Scikit-learn for implementing machine

learning algorithms. The custom dataset used in this study consisted of 400 balanced applications.

The proposed tool analyzes Android applications through static analysis, meaning that the app file is

examined without executing it on a physical device or emulator. The main objective is to identify the

requested permissions, which are key indicators of an application’s intended behavior and potential

impact on the system.

The static analysis process consists of the following steps:

1. Extracting the AndroidManifest.xml by Unpacking APK or XAPK files, and all application

declarations requested permissions are registered.

2. Analyzing the application structure and retrieving the complete list of requested permissions.

3. Extracted permissions are transforming them into a machine-readable format by converting

them into a binary representation (1 = permission requested, 0 = permission not requested).

4. Constructing a feature table, where each application is represented as a row and each column

represents a specific permission or feature.

5. Labeling the applications for classification, where malicious applications are assigned the

value 1, while benign applications are assigned the value 0.

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2545

After these operations are completed, extracted features are stored in the database, as shown in Figure

4, and are prepared for machine learning classification to distinguish between benign and malicious

applications. then, applied feature selection techniques to identify the most relevant permissions, and

improving classification performance while reducing computational complexity.

Figure 4 Dataset after feature extraction

6 Results & Performance Analysis

Three widely used machine learning classification algorithms applied in this research:

Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) to distinguish

benign from malicious Android applications. Evaluating the performance of these models by

using Accuracy, Precision, Recall, and F1-Score for both Class 0 (benign) and Class 1 (malicious),

as shown in Table 2. The aim of this section is to assess the effectiveness of the developed tool in

detecting malware applications through comparing its performance against three other approaches

to determine whether it performs better [23].

The highest accuracy was achieved by Random Forest (93.75%), showing balanced recall and

precision scores. SVM also performed well, achieving high results, although slightly lower than

Random Forest in malware detection. Decision Tree produced the lowest performance. Based on

these findings, we recommended Random Forest as the best model for Android malware detection

because its reduces overfitting, has high accuracy, and robust performance.

6-1 Random Forest (RF)

It is an ensemble learning method for building multiple decision trees and combining their

predictions by voting mechanism, which reduces overfitting and enhances accuracy , It is, in

particular effective for high-dimensional datasets. RF achieved an overall accuracy of 93.75%.

For Class 0 (benign), the model acquired Precision of 0.91, Recall of 0.94, and F1-Score of 0.93,

strong ability to classify benign applications correctly. For Class 1 (malicious), the model

performed even better, achieving a Precision of 0.96, Recall of 0.94, and F1-Score of 0.95.

6-2 Support Vector Machine (SVM)

It is a popular classification algorithm which finds the optimal hyperplane to separate classes

in a multi-dimensional space. performing effectively in high-dimensional and non-linear datasets

when using appropriate kernels. In this research, the analysis of SVM achieved an overall

accuracy like to RF (93.75%). For Class (0) it achieved a Precision of 0.94, Recall of 0.91 , and

F1-Score of 0.92. For Class (1) the scores were Precision: 0.94 , Recall: 0.96 , and F1-Score: 0.95.

indicating these results, while SVM is high effective in malicious applications detection, it

performs lower effectively in identifying benign applications compared to RF.

6-3 Decision Tree (DT)

It is an essential classification algorithm that division datasets into branches (nodes) based on

feature thresholds. It is simple to implement and interpret, and prone to overfitting, exceptionally

USE_FINGERPRINT ACCESS_WIFI_STATE WRITE_CALL_LOG MODIFY_AUDIO_SETTINGS READ_CALENDAR UNINSTALL_SHORTCUT READ_PHONE_STATE WRITE_SETTINGS WRITE_EXTERNAL_STORAGE READ_EXTERNAL_STORAGE GET_ACCOUNTS

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 1

1 1 0 1 0 1 1 1 1 1 1

0 0 0 1 0 0 1 0 1 1 1

0 1 0 1 0 0 1 0 1 1 0

1 1 0 1 0 0 1 1 1 1 1

0 0 0 0 0 0 1 0 1 1 0

0 1 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 1 1 1

1 1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 1 0 1 1 0

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2546

when pruning or parameter tuning is not applied. In this work, DT achieved an overall accuracy of

90.00% . For Class (0) the model scored a Precision of 0.90, Recall of 0.85 , and F1-Score of 0.88

, indicating a notable decline in correctly identifying benign applications. For Class (1) it achieved

a Precision of 0.94, Recall of 0.90, and F1-Score of 0.92, which is slightly lower compared to RF

and SVM.

Table 2 Performance evaluation

Model Accuracy
Class 0 Class 1

Precision Recall F1-Score Precision Recall F1-Score

RF 93.75 0.91 0.94 0.93 0.96 0.94 0.95

SVM 93.75 0.94 0.91 0.92 0.94 0.96 0.95

DT 90.00 0.90 0.85 0.88 0.90 0.94 0.92

7 Evaluation Metrics

The evaluation metrics presented in Table 3 are essential for assessing the performance of a

malware classification model based on machine learning. Ensuring that an efficient malware

detection model achieves high precision to lower false positives (FP) and high recall to minimize

false negatives (FN) while keeping an optimal balance between these two measures through the

F1-score.

Precision is defined as the ratio of correctly identified positive instances (true positives) to all

instances predicted as positive (true positives plus false positives). Recall (or sensitivity)

measures the proportion of actual positive instances that are correctly identified by the model .

The F1-score combines precision and recall into a single value providing a balanced evaluation of

the system’s overall performance. A maximum value of 1.000 indicates optimal detection

performance [24].

The performance of the proposed tool was evaluated using the following metrics :

 Accuracy: The percentage of applications correctly classified as either benign or

malicious.

 Precision: The ability of the model to correctly identify malware while minimizing false

alarms.

 Recall: The capability of the model to correctly identify the majority of malicious

applications.

 F1-score: A harmonic mean of precision and recall, providing a single measure for

balanced evaluation.

Confusion Matrix : A detailed breakdown of correct and incorrect classifications, used to analyze

the distribution of true positives , false positives , true negatives , and false negatives.

Table 3 Description of evaluation metrics.

Metrics Descriptions

𝑇 𝑃 The number of correctly identified malicious Apps.

𝑇𝑁 The number of correctly identified benign Apps.

𝐹𝑃 The number of misidentified benign Apps.

𝑇𝑁 The number of misidentified malicious Apps.

𝐴𝐶𝐶 (𝑇 𝑃 + 𝑇𝑁) ∕ (𝑇 𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇 𝑃 ∕ (𝑇 𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 𝑇 𝑃 ∕ (𝑇 𝑃 + 𝐹𝑁)

𝐹1 (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) ∕ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2547

8 Result Discussion

The results of the classification comparison indicate that the Random Forest (RF) model

achieved the highest accuracy (93.75%) equal to that of the Support Vector Machine (SVM)

classifier, as illustrated in Figure 5. However, RF outperformed the other classifiers in terms of

the F1-score for both Class 0 (benign) and Class 1 (malicious) , establishing it as the most

effective model overall.

Contrary to some expectations, RF demonstrated strong capabilities in detecting both benign and

malicious applications, with no significant weaknesses in identifying malicious samples.

Although the SVM achieved the same accuracy (93.75%) as RF, it showed slightly better

precision for Class 0 (RF: 0.91 vs. SVM: 0.94). However, its F1-score for Class 0 was slightly

lower (RF: 0.93 vs. SVM: 0.92). Notably , SVM achieved the highest recall for Class 1, reaching

0.96, indicating superior performance in detecting malicious applications.

The Decision Tree (DT) recorded the lowest accuracy (90.00%) among all classifiers. Its weakest

performance was observed in the recall for Class 0 (0.85) suggesting difficulties in correctly

identifying benign applications. DT showed competitive performance in detecting Class 1, with

precision (0.94) and recall (0.90) values comparable to those of RF and SVM.

Figure 5 Comparative performance of classification algorithms

the confusion matrix as shown in Figure 6 a value of 1 indicates a positive classification

(malicious application), while a value of 0 indicates a negative classification (benign application).

higher concentration of values along the diagonal of the confusion matrix demonstrates the

model’s effectiveness , as it reflects a high number of correct classifications for both benign and

malicious applications.

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2548

Figure 6 Confusion matrix of all 3 ML malware detection models.

9 Performance Comparison

A custom dataset was specifically developed for this research, which presents certain

challenges in establishing direct comparisons with other studies. While most related works utilize

publicly available benchmark datasets such as AndroZoo, VirusTotal, or Kaggle, which are

widely used and easily accessible to the research community, the dataset in this study was

constructed using live APK applications.

Permissions were extracted in a real-world context, providing more realistic and practically

relevant data for malware detection. However, this approach introduces limitations in terms of

direct comparability with the results reported in previous literature.

Table 4 presents a comparative analysis between the findings of this research and the most recent,

closely related studies that share similar objectives, providing context for evaluating the

performance of the proposed methodology.

Table 4 Comparative study with related work.

Ref. Feature used
Classification

algorithm

Classification

performance
date

[25]

Permissions,

commands,

function calls

Random Forest

90.47% (using

permissions only)
2024

[26]
Permission-based

static features

Random Forest and

other classifiers
Random Forest TPR:

91.6%
2021

This

Research

Permission-based

static features

RF 93.75%

2025 SVM 92.63%

DT 90.00%

10 Challenges & Limitations

Despite the promising results, several limitations may influence the performance of the proposed

tool. First, the analysis was conducted entirely using static techniques, which limits the tool’s

ability to detect malware that relies on dynamic behavior. Additionally , the tool demonstrates

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2549

limited capability in identifying benign applications that can rapidly transform into malware

through obfuscation techniques [27].

The tool may also fail to function effectively with applications that deliberately obscure or

encrypt their code, a common strategy used by advanced malware to evade detection.

Furthermore, the evaluation was conducted on a relatively small dataset of 400 applications ,

which may not fully reflect real-world performance.

In real-time applications, however, the Random Forest algorithm is expected to perform more

efficiently due to its higher accuracy and robustness, making it a strong candidate for deployment

in practical malware detection systems.

11 Conclusion and future work

Static analysis plays a crucial role in detecting and classifying Android applications by

examining their code structure, permissions, API calls, and other essential features without requiring

execution. This research investigated the effectiveness of static analysis techniques in detecting

malicious applications. By analyzing manifest files, API usage, and other key static features, the study

demonstrated that static analysis provides a proactive approach to malware detection.

The findings confirm that static features can be effectively used for early threat detection. However,

they also highlight certain limitations, particularly against sophisticated malware that employs code

obfuscation or dynamic behavior, where dynamic analysis becomes essential. The processed features

in this static investigation, especially API calls and manifest files, continue to be preferred by security

experts, underlining their significance in Android malware detection [27].

As part of future work, efforts are directed toward enhancing the static analysis component to extract a

broader range of features beyond permissions, thereby improving classification accuracy. In parallel,

the development of a dynamic analysis framework is underway, where applications will be executed

in a controlled environment to monitor requested permissions, intents, and behavioral patterns during

runtime, providing a more comprehensive detection mechanism against advanced and evasive

malware.

ACKNOWLEDGMENT

We would like to thank the University of Mosul/Iraq and the College of Computer Science

and Mathematics as well as the Department of Software Science for providing support and computer

labs.

REFERENCE

[1] K. H. Thanoon, B. Mahmood, and M. M. A. Dabdawb, “The Effect of Malware’s Apis Relations

on Software Security Design,” MINAR International Journal of Applied Sciences and

Technology, Vol. 4, No. 1, pp. 1–157, Mar. 2022, doi: 10.47832/2717-8234.10.14.

[2] S. Hasoon, T. Najim AL-Hadidi, and S. Omar Hasoon, “Software Defect Prediction using

Extreme Gradient Boosting (XGBoost) with Optimization Hyperparameter,” Journal of

Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, pp. 22–29, 2024, doi:

10.33899/CSMJ.2023.142739.108.

[3] M. A. A. Al-Ameri, B. Mahmood, B. Ciylan, and A. Amged, “Unsupervised Forgery Detection

of Documents: A Network-Inspired Approach,” Electronics (Switzerland), Vol. 12, No. 7, Apr.

2023, doi: 10.3390/electronics12071682.

[4] A. Muzaffar, H. R. Hassen, H. Zantout, and M. A. Lones, “DroidDissector: A Static and

Dynamic Analysis Tool for Android Malware Detection,” Aug. 2023, doi: 10.1007/978-3-031-

40598-3_1.

[5] C. S. Yadav et al., “Malware Analysis in IoT & Android Systems with Defensive Mechanism,”

Electronics (Switzerland), Vol. 11, No. 15, Aug. 2022, doi: 10.3390/electronics11152354.

[6] I. Almomani, M. Ahmed, and W. El-Shafai, “Android Malware Analysis in a Nutshell,” PLoS

One, Vol. 17, No. 7 July, Jul. 2022, doi: 10.1371/journal.pone.0270647.

[7] T. Tu, H. Zhang, B. Gong, D. Du, and Q. Wen, “Intelligent Analysis of Android Application

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2550

Privacy Policy and Permission Consistency,” Artif Intell Rev, Vol. 57, No. 7, Jul. 2024, doi:

10.1007/s10462-024-10798-z.

[8] Q. Wu, X. Zhu, and B. Liu, “A Survey of Android Malware Static Detection Technology based

on Machine Learning,” 2021, Hindawi Limited. doi: 10.1155/2021/8896013.

[9] Z. Muhammad, Z. Anwar, A. R. Javed, B. Saleem, S. Abbas, and T. R. Gadekallu, “Smartphone

Security and Privacy: A Survey on APTs, Sensor-based Attacks, Side-Channel Attacks, Google

Play Attacks, and Defenses,” Jun. 01, 2023, MDPI. doi: 10.3390/technologies11030076.

[10] S. Arshad, M. Ali, A. Khan, and M. Ahmed, “Android Malware Detection & Protection: A

Survey,” International Journal of Advanced Computer Science and Applications, Vol. 7, No. 2,

2016, doi: 10.14569/ijacsa.2016.070262.

[11] P. Faruki, R. Bhan, V. Jain, S. Bhatia, N. El Madhoun, and R. Pamula, “A Survey and Evaluation

of Android-based Malware Evasion Techniques and Detection Frameworks,” Jul. 01, 2023,

Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/info14070374.

[12] N. faith M Jameel and M. M. T. Jawhar, “A Survey on Malware Attacks Analysis and Detected,”

International Research Journal of Innovations in Engineering and Technology, Vol. 07, No. 05,

pp. 32–40, 2023, doi: 10.47001/irjiet/2023.705005.

[13] N. A. Sultan, K. H. Thanoon, and O. A. Ibrahim, “Ethical Hacking Implementation for Lime

Worm Ransomware Detection,” in Journal of Physics: Conference Series, Institute of Physics

Publishing, May 2020. doi: 10.1088/1742-6596/1530/1/012078.

[14] S. Sharma, Prachi, R. Chhikara, and K. Khanna, “A Novel Feature Selection Technique:

Detection and Classification of Android Malware,” Egyptian Informatics Journal, Vol. 29, Mar.

2025, doi: 10.1016/j.eij.2025.100618.

[15] K. Kılıç, İ. Atacak, and İ. A. Doğru, “FABLDroid: Malware Detection based on Hybrid Analysis

with Factor Analysis and Broad Learning Methods for Android Applications,” Engineering

Science and Technology, an International Journal, Vol. 62, Feb. 2025, doi:

10.1016/j.jestch.2024.101945.

[16] J. Feng, L. Shen, Z. Chen, Y. Lei, and H. Li, “HGDetector: A Hybrid Android Malware

Detection Method using Network Traffic and Function Call Graph,” Alexandria Engineering

Journal, Vol. 114, pp. 30–45, Feb. 2025, doi: 10.1016/j.aej.2024.11.068.

[17] W. Zhao, J. Wu, and Z. Meng, “AppPoet: Large Language Model based Android Malware

Detection via Multi-View Prompt Engineering,” Apr. 2024, [Online]. Available:

http://arxiv.org/abs/2404.18816

[18] M. M. Alani and M. Alawida, “Behavioral Analysis of Android Riskware Families using

Clustering and Explainable Machine Learning,” Big Data and Cognitive Computing, Vol. 8, No.

12, Dec. 2024, doi: 10.3390/bdcc8120171.

[19] H. INAYOSHI Supervisor and S. Saito, “A Study on Taint Analysis with Runtime Data for

Tracking Information Flows in Android Apps,” 2024.

[20] M. F. Ismael and K. H. Thanoon, “Investigation Malware Analysis Depend on Reverse

Engineering using IDAPro,” in 2022 8th International Conference on Contemporary Information

Technology and Mathematics, ICCITM 2022, Institute of Electrical and Electronics Engineers

Inc., 2022, pp. 227–231. doi: 10.1109/ICCITM56309.2022.10031698.

[21] A. Ali and N. N. Saleem, “Classification of Software Systems Attributes based on Quality

Factors using Linguistic Knowledge and Machine Learning: A review.,” Journal of Education

and Science, Vol. 31, No. 3, pp. 66–90, Sep. 2022, doi: 10.33899/edusj.2022.134024.1245.

[22] H. Ngirande, M. Muduva, R. Chiwariro, and A. Makate, “Detection and Analysis of Android

Ransomware using the Support Vector Machines,” Int J Res Appl Sci Eng Technol, Vol. 12, No.

1, pp. 241–252, Jan. 2024, doi: 10.22214/ijraset.2024.57885.

[23] H. Babbar, S. Rani, D. K. Sah, S. A. AlQahtani, and A. Kashif Bashir, “Detection of Android

Malware in the Internet of Things Through the K-Nearest Neighbor Algorithm,” Sensors, Vol.

23, No. 16, Aug. 2023, doi: 10.3390/s23167256.

[24] D. Aboshady, N. Ghannam, E. Elsayed, and L. Diab, “The Malware Detection Approach in the

Design of Mobile Applications,” Symmetry (Basel), Vol. 14, No. 5, May 2022, doi:

10.3390/sym14050839.

[25] P. Sivaprakash, M. Sankar, J. Vimala Ithayan, and C. Ramalingam, "Autonomous Android

Malware Detection System based on Static Analysis," in Proc. 2024 Int. Conf. Integration

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 14, Nomor 5, 2025: 2540-2551 e-ISSN:2540-9719

http://sistemasi.ftik.unisi.ac.id

2551

Emerging Technol. Digital World (ICIETDW), Sep. 2024, pp. 1–6, doi:

10.1109/ICIETDW61607.2024.10939283.

[26] J. M. Arif, M. F. A. Razak, S. Awang, S. R. T. Mat, N. S. N. Ismail, and A. Firdaus, “A Static

Analysis Approach for Android Permission-based Malware Detection Systems,” PLoS One, Vol.

16, No. 9 September, Sep. 2021, doi: 10.1371/journal.pone.0257968.

[27] R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan, and M. F. A. Razak, “Malware

Detection using Static Analysis in Android: a review of FeCO (Features, Classification, and

Obfuscation),” PeerJ Comput Sci, Vol. 7, pp. 1–54, 2021, doi: 10.7717/peerj-cs.522.

