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Abstract 
The rapid growth of Android applications has led to increased security threats, making malware 

detection a critical concern in cybersecurity. This research proposes a static analysis-based technique 

that employs machine learning for Android malware detection. The proposed method utilizes three 

classification algorithms: Support Vector Machine (SVM), Random Forest, and Decision Tree. The 

tool extracts static permission features from APK files to evaluate their effectiveness. The dataset 

consists of 400 Android applications (200 benign and 200 malicious), which were analyzed using the 

three machine learning models. Their performance was evaluated and compared using accuracy , 

precision, recall, and F1-score. The Random Forest model achieved the highest accuracy. The results 

demonstrate that static analysis combined with a robust classification model can effectively identify 

malicious applications with a high degree of accuracy. Although the tool is reliable in detecting 

Android malware, it has limitations in handling obfuscated and dynamic threats. Future research 

could focus on integrating dynamic analysis techniques to improve detection accuracy and enhance 

resistance to evasion techniques. 

Keywords: android malware, static analysis, machine learning, support vector machine, random 

forest, decision tree, cybersecurity 

 

1 Introduction 

Software security involves protecting software from various types of malware and is a crucial 

aspect of cybersecurity. Initially, hacking was mainly considered a prank targeting victims’ machines. 

However, with the continuous evolution of internet services the motivation behind cyberattacks 

shifted from mere amusement to financial gain and other valuable assets [1]. 

Mobile devices have become essential for various services such as communication, entertainment, 

financial transactions, and education. Software applications are now deeply integrated into daily life, 

influencing critical domains like traffic control, aviation, and self-driving cars [2]. For many people, 

life without these devices is unimaginable. 
Android is one of the most popular and widely used mobile operating systems, consistently evolving 

and gaining popularity. Modern applications and devices such as smartphones, laptops, printers, and 

scanners have introduced several security challenges [3]. According to StatCounter, Android 

dominated the global smartphone operating system market in 2023, accounting for approximately 

71.74% [4]. 

Because of its open-source nature and frequent updates by a vast developer community, Android has 

become a primary target for cyberattacks, mainly through malicious applications (malware). Android 

malware has evolved rapidly, adopting sophisticated techniques such as encryption and obfuscation to 

conceal its malicious intent. 

Attackers can be individuals or organized groups, including former intelligence operatives or 

independent hackers. In general, hackers are categorized into two main groups: black-hat hackers, 

who exploit vulnerabilities for malicious purposes, and white-hat hackers, who work to improve 

system security [5]. 
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Static analysis is one of the primary methods used to detect malware on Android devices. It involves 

extracting permission features from an APK application to identify malicious behavior, as shown in 

Figure 1. However, its major drawback is vulnerability to techniques such as code obfuscation and 

polymorphism, which complicate feature extraction [6]. 

Static and dynamic analysis operate differently but share the same goal of detecting malicious 

behavior. For instance, if an application uses location permissions to transmit a user’s geolocation to a 

third-party server, both static and dynamic analysis would typically classify this as a privacy leakage 

case [7]. 

 

 
Figure 1 Taxonomy of Android malware features [8] 

 

To address these challenges, various malware detection techniques have been developed, including 

static, dynamic, and hybrid approaches. Static analysis is considered efficient because it examines an 

application’s code and structure without executing it [9]. By inspecting permissions, API calls, and 

control flow graphs, static analysis provides valuable information for identifying malicious 

applications. Its main advantage lies in detecting vulnerabilities before application installation and 

execution. 

However, static analysis struggles with highly obfuscated or polymorphic malware, where attackers 

use techniques like variable renaming, junk code insertion, or code encryption to hide malicious intent 

[10].  

One of the major problems related to detecting malware using just static analysis is their advanced 

evasion techniques, including obfuscation and polymorphism. Obfuscation makes the code of an 

application harder to understand. For example, it can be done through renaming a variable, inserting 

superfluous or misleading code, or encrypting parts of the application’s code, which will then only be 

decrypted at runtime [8]. static feature extraction becomes ineffective and is often misclassified.  

Similarly, polymorphism also provides malware to modify its structure or signature on each infection 

while maintaining its malicious functionality, thereby drastically reducing the effectiveness of 

signature-based or static analysis methods [11].The above confer wishes the combination of static and 

dynamic techniques in the future to address the issue of such malware evasion and improve detection 

accuracy. 

Recent research has focused on enhancing static analysis by integrating machine learning techniques, 

which can identify patterns and anomalies in application code more effectively. 
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This research aims to improve Android malware detection using static analysis combined with 

machine learning algorithms. Specifically, it investigates critical static features of permissions to 

develop a robust and scalable detection system capable of identifying both known and new malware 

variants.  

 

2 RELATED WORK 

Malware analysis has gained increasing attention due to the growing security threats targeting the 

Android system. Various methods have been proposed to detect malicious applications, including 

machine learning, static analysis, and dynamic analysis. This section discusses previous studies, 

highlighting their contributions, strengths, and weaknesses, in order to identify research gaps and 

improve Android security. 

Malware analysis aims to provide sufficient information to assess the severity of malicious software. 

It involves examining malware to understand its behavior, evolution, targeted victims, and other 

relevant aspects [12]. The static analysis presented in [13] examines the structure of executable files 

without executing them, such as in the case of the Lime Worm Ransomware. This method involves 

extracting information such as hash codes, analyzing PE files using PeStudio, and identifying 

suspicious string patterns. Signature verification is performed using VirusTotal to determine whether 

a file is malicious. 

There are many studies that employ static analysis to develop machine learning models capable of 

differentiating between benign and malicious applications. A number of these studies focused on 

permission-based classification, opcode sequence detection, and API usage analysis. Reverse 

engineering was also done to access internal components of APK files (like .dex, resources, and 

manifest). 

According to the paper in [14], a new mechanism for feature selection is suggested independent of 

dynamic analysis, various different features such as API calls and permissions are extracted and 

classified using machine learning techniques. The primary aim of this method is to enhancement 

detection accuracy by lowering number of features. In a similar context, the paper in [15] applies 

static analysis to extract and analyze the features of the application before execution by examining 

APK files. Dimensionality reduction is achieved through factor Analysis of permissions, API calls, 

opcodes, and textual data from the manifest file followed by Broad Learning to improve prediction 

accuracy. The The research based in [16] uses static code from an application in order to extract 

function call graphs. Merging this with dynamic features, this approach significantly improves 

accuracy detection, especially against dynamically loaded code and obfuscation, which pose major 

challenges in detecting malware. 

In addition, in research [17] collects features such as permissions, API calls, and URLs, then 

leverages large language models (LLMs) to analyze relationships between features, accuracy 

detection is enhanced, and detailed interpretability reports are provided. In [18], detecting riskware by 

analyzing APK files without execution. Extracting features includes permissions, API calls, manifest 

entries, and coding structures. These features help to identify high-risk permissions, sensitive API 

access, dynamic code loading, and obfuscation patterns, which are then fed into machine learning 

models for riskware classification. 

 
 

3 Dataset Creation 

A custom-built dataset of Android applications was specifically constructed for this study for 

enable the analysis of malicious behavior and detection. This dataset combines critical features such 

as application permissions, which play an important role in supporting the process of classification. It 

was organized to arranged to make it compatible with machine learning techniques. 

The Kronodroid dataset from [14] is used for static analysis, where features such as API calls, 

permissions, and opcode instructions are extracted from the applications without executing. Feature 

selection techniques were used to find the most influential factors that cause harmful activity to 

improve classification accuracy in static analysis. Moreover, this method decreases the number of 

features for classification which enhances processing efficiency. 
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Android applications, as shown in Table 1, were downloaded from trusted sources such as the Google 

Play Store [19], Uptodown, and APKPure for benign samples. Malicious applications were obtained 

from reputable global platforms that legally provide malware samples for research purposes, 

supporting the training and development of Android malware detection tools. Key sources included 

AndroZoo [15] and VirusTotal [10], which supplied malicious APK samples. 

The resulting dataset was balanced, consisting of an equal number of benign and malicious 

applications. This balanced composition was specifically designed to facilitate the extraction of 

permission-related features, thereby enabling accurate classification between benign and malicious 

applications. 

 

Table 1 Source of Benign and Malicious APK 

Source Name Website URL Label Number of Samples 

Google play https://play.google.com/store  
 

Benign 55 

APKpure https://apkpure.com/en/  Benign 75 

Uptodown https://en.uptodown.com/  Benign 70 

Vrusetotal https://www.virustotal.com/gui/home/upload 
 

Malicious 88 

MalwareBazaar https://bazaar.abuse.ch/ Malicious 68 

AndroZoo https://androzoo.uni.lu/ Malicious 44 

Total 400 

 

4 Methodology 

The primary objective of this research is to analyze and detect Android malware applications 

based on the permissions requested by an application without executing it, as illustrated in Figure 2. 

To achieve this goal, malware was classified according to its infection mechanisms, enabling the 

identification of the types of malware that the proposed methodology can detect at the permission 

level. 

 

 
Figure 2 Static analysis design 

 

Initially, the Android application file is processed through the proposed tool, which performs static 

analysis by examining the application’s code and manifest files without executing it, as illustrated in 

Figure 3. The static analysis focuses on extracting requested permissions features, which are essential 

indicators for identifying malicious behaviors. To enhance detection accuracy , these extracted 

features undergo feature selection techniques to identify the most discriminative attributes for 

malware classification. The study in [20] supports this approach by analyzing malicious files to 

determine the most significant behavioral patterns and infection strategies, which aids in improving 

feature-based classification. All selected features are systematically stored in an Excel sheet for 

further processing and model training. 
In the subsequent step, the extracted features are fed into a machine learning (ML) algorithm to 

classify the application as either benign or malicious. Essential machine learning techniques, 

including classification, regression analysis, clustering, feature engineering, and deep learning, are 

employed to enhance prediction accuracy and improve classification performance [21]. To further 

optimize classification results, a feature selection technique is applied to identify the most relevant 

features. For instance, as demonstrated in [22], an SVM-based model achieved highly accurate 

https://apkpure.com/en/
https://en.uptodown.com/
https://bazaar.abuse.ch/
https://androzoo.uni.lu/
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ransomware detection, where static features yielded an accuracy of 81%, while dynamic features 

achieved 100% accuracy. 

 
Figure 3 The proposed tool works 

 

5 Experimental Setup and Static Feature Extraction Process  

The experiments were conducted using Android Studio Ladybug 2024.2.1 Patch 3 on a Windows 

11 Home 64-bit system. Static analysis was employed for malware detection, and the implementation 

was performed in Python using the following libraries: Androguard for APK file analysis, ADB 

(Android Debug Bridge) for accessing application files, and Scikit-learn for implementing machine 

learning algorithms. The custom dataset used in this study consisted of 400 balanced applications. 

The proposed tool analyzes Android applications through static analysis, meaning that the app file is 

examined without executing it on a physical device or emulator. The main objective is to identify the 

requested permissions, which are key indicators of an application’s intended behavior and potential 

impact on the system. 

The static analysis process consists of the following steps: 

 

1. Extracting the AndroidManifest.xml by Unpacking APK or XAPK files, and all application 

declarations requested permissions are registered. 

 

2. Analyzing the application structure and retrieving the complete list of requested permissions. 

 

3. Extracted permissions are transforming them into a machine-readable format by converting 

them into a binary representation (1 = permission requested, 0 = permission not requested). 

 

4. Constructing a feature table, where each application is represented as a row and each column 

represents a specific permission or feature. 

 

5. Labeling the applications for classification, where malicious applications are assigned the 

value 1, while benign applications are assigned the value 0. 
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After these operations are completed, extracted features are stored in the database, as shown in Figure 

4, and are prepared for machine learning classification to distinguish between benign and malicious 

applications. then, applied feature selection techniques to identify the most relevant permissions, and 

improving classification performance while reducing computational complexity. 

 

 
Figure 4 Dataset after feature extraction 

 

6 Results & Performance Analysis   

Three widely used machine learning classification algorithms applied in this research: 

Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) to distinguish 

benign  from malicious Android applications. Evaluating the performance of these models by 

using Accuracy, Precision, Recall, and F1-Score for both Class 0 (benign) and Class 1 (malicious), 

as shown in Table 2. The aim of this section is to assess the effectiveness of the developed tool in 

detecting malware applications through comparing its performance against three other approaches 

to determine whether it performs better [23]. 

The highest accuracy was achieved by Random Forest (93.75%), showing balanced recall and 

precision scores. SVM also performed well, achieving high results, although slightly lower than 

Random Forest in malware detection. Decision Tree produced the lowest performance. Based on 

these findings, we recommended Random Forest as the best model for Android malware detection 

because its reduces overfitting, has high accuracy, and robust performance. 
 

6-1 Random Forest (RF) 

It is an ensemble learning method for building multiple decision trees and combining their 

predictions by voting mechanism, which reduces overfitting and enhances accuracy , It is, in 

particular effective for high-dimensional datasets. RF achieved an overall accuracy of 93.75%. 

For Class 0 (benign), the model acquired  Precision of 0.91, Recall of 0.94, and F1-Score of 0.93, 

strong ability to classify benign applications correctly. For Class 1 (malicious), the model 

performed even better, achieving a Precision of 0.96, Recall of 0.94, and F1-Score of 0.95. 

6-2 Support Vector Machine (SVM) 

It is a popular classification algorithm which finds the optimal hyperplane to separate classes 

in a multi-dimensional space. performing effectively in high-dimensional and non-linear datasets 

when using appropriate kernels. In this research, the analysis of SVM achieved an overall 

accuracy like to RF (93.75%). For Class (0)  it achieved a Precision of 0.94, Recall of 0.91 , and 

F1-Score of 0.92. For Class (1) the scores were Precision: 0.94 , Recall: 0.96 , and F1-Score: 0.95. 

indicating these results, while SVM is high effective in malicious applications detection, it 

performs lower effectively in identifying benign applications compared to RF. 

 

6-3 Decision Tree (DT) 

It is an essential classification algorithm that division datasets into branches (nodes) based on 

feature thresholds. It is simple to implement and interpret, and prone to overfitting, exceptionally 

USE_FINGERPRINT ACCESS_WIFI_STATE WRITE_CALL_LOG MODIFY_AUDIO_SETTINGS READ_CALENDAR UNINSTALL_SHORTCUT READ_PHONE_STATE WRITE_SETTINGS WRITE_EXTERNAL_STORAGE READ_EXTERNAL_STORAGE GET_ACCOUNTS

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 1 1 1

1 1 0 1 0 1 1 1 1 1 1

0 0 0 1 0 0 1 0 1 1 1

0 1 0 1 0 0 1 0 1 1 0

1 1 0 1 0 0 1 1 1 1 1

0 0 0 0 0 0 1 0 1 1 0

0 1 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 1 1 1

0 1 0 0 0 0 1 0 1 1 1

0 1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 1 1 1

1 1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 1 0 1 1 0
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when pruning or parameter tuning is not applied. In this work, DT achieved an overall accuracy of 

90.00% . For Class (0) the model scored a Precision of 0.90, Recall of 0.85 , and F1-Score of 0.88 

, indicating a notable decline in correctly identifying benign applications. For Class (1) it achieved 

a Precision of 0.94, Recall of 0.90, and F1-Score of 0.92, which is slightly lower compared to RF 

and SVM. 

 
Table 2 Performance evaluation 

Model Accuracy 
Class 0 Class 1 

Precision Recall F1-Score Precision Recall F1-Score 

RF 93.75 0.91 0.94 0.93 0.96 0.94 0.95 

SVM 93.75 0.94 0.91 0.92 0.94 0.96 0.95 

DT 90.00 0.90 0.85 0.88 0.90 0.94 0.92 

 

7 Evaluation Metrics   

The evaluation metrics presented in Table 3 are essential for assessing the performance of a 

malware classification model based on machine learning. Ensuring that an efficient malware 

detection model achieves high precision to lower false positives (FP) and high recall to minimize 

false negatives (FN) while keeping an optimal balance between these two measures through the 

F1-score. 

Precision is defined as the ratio of correctly identified positive instances (true positives) to all 

instances predicted as positive (true positives plus false positives). Recall (or sensitivity) 

measures the proportion of actual positive instances that are correctly identified by the model . 

The F1-score combines precision and recall into a single value providing a balanced evaluation of 

the system’s overall performance. A maximum value of 1.000 indicates optimal detection 

performance [24]. 

The performance of the proposed tool was evaluated using the following metrics : 

 Accuracy: The percentage of applications correctly classified as either benign or 

malicious. 

 Precision: The ability of the model to correctly identify malware while minimizing false 

alarms. 

 Recall: The capability of the model to correctly identify the majority of malicious 

applications. 

 F1-score: A harmonic mean of precision and recall, providing a single measure for 

balanced evaluation. 

Confusion Matrix : A detailed breakdown of correct and incorrect classifications, used to analyze 

the distribution of true positives , false positives , true negatives , and false negatives. 

 

Table 3 Description of evaluation metrics. 

Metrics Descriptions 

𝑇 𝑃 The number of correctly identified malicious Apps. 

𝑇𝑁 The number of correctly identified benign Apps. 

𝐹𝑃 The number of misidentified benign Apps. 

𝑇𝑁 The number of misidentified malicious Apps. 

𝐴𝐶𝐶 (𝑇 𝑃 + 𝑇𝑁) ∕ (𝑇 𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇 𝑃 ∕ (𝑇 𝑃 + 𝐹𝑃 ) 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑇 𝑃 ∕ (𝑇 𝑃 + 𝐹𝑁) 

𝐹1 (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) ∕ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
 
 



Sistemasi: Jurnal Sistem Informasi                                     ISSN:2302-8149 
Volume 14, Nomor 5, 2025: 2540-2551                          e-ISSN:2540-9719 
 

http://sistemasi.ftik.unisi.ac.id 

 
 

2547 
 

8 Result Discussion  

The results of the classification comparison indicate that the Random Forest (RF) model 

achieved the highest accuracy (93.75%) equal to that of the Support Vector Machine (SVM) 

classifier, as illustrated in Figure 5. However, RF outperformed the other classifiers in terms of 

the F1-score for both Class 0 (benign) and Class 1 (malicious) , establishing it as the most 

effective model overall. 

Contrary to some expectations, RF demonstrated strong capabilities in detecting both benign and 

malicious applications, with no significant weaknesses in identifying malicious samples. 

Although the SVM achieved the same accuracy (93.75%) as RF, it showed slightly better 

precision for Class 0 (RF: 0.91 vs. SVM: 0.94). However, its F1-score for Class 0 was slightly 

lower (RF: 0.93 vs. SVM: 0.92). Notably , SVM achieved the highest recall for Class 1, reaching 

0.96, indicating superior performance in detecting malicious applications. 

The Decision Tree (DT) recorded the lowest accuracy (90.00%) among all classifiers. Its weakest 

performance was observed in the recall for Class 0 (0.85) suggesting difficulties in correctly 

identifying benign applications. DT showed competitive performance in detecting Class 1, with 

precision (0.94) and recall (0.90) values comparable to those of RF and SVM. 

 

 
Figure 5 Comparative performance of classification algorithms 

 

the confusion matrix as shown in Figure 6 a value of 1 indicates a positive classification 

(malicious application), while a value of 0 indicates a negative classification (benign application).  

higher concentration of values along the diagonal of the confusion matrix demonstrates the 

model’s effectiveness , as it reflects a high number of correct classifications for both benign and 

malicious applications. 
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Figure 6 Confusion matrix of all 3 ML malware detection models. 

 

9 Performance Comparison 

A custom dataset was specifically developed for this research, which presents certain 

challenges in establishing direct comparisons with other studies. While most related works utilize 

publicly available benchmark datasets such as AndroZoo, VirusTotal, or Kaggle, which are 

widely used and easily accessible to the research community, the dataset in this study was 

constructed using live APK applications. 

Permissions were extracted in a real-world context, providing more realistic and practically 

relevant data for malware detection. However, this approach introduces limitations in terms of 

direct comparability with the results reported in previous literature. 

Table 4 presents a comparative analysis between the findings of this research and the most recent, 

closely related studies that share similar objectives, providing context for evaluating the 

performance of the proposed methodology. 
 

Table 4 Comparative study with related work. 

Ref. Feature used 
Classification 

algorithm 

Classification 

performance 
date 

[25] 

Permissions, 

commands, 

function calls 

Random Forest 

 
 

90.47% (using 

permissions only) 
2024 

[26] 
Permission-based 

static features 

Random Forest and 

other classifiers 
Random Forest TPR: 

91.6% 
2021 

This 

Research 

Permission-based 

static features 

RF 93.75% 

2025 SVM 92.63% 

DT 90.00% 

 

10 Challenges & Limitations   

Despite the promising results, several limitations may influence the performance of the proposed 

tool. First, the analysis was conducted entirely using static techniques, which limits the tool’s 

ability to detect malware that relies on dynamic behavior. Additionally , the tool demonstrates 
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limited capability in identifying benign applications that can rapidly transform into malware 

through obfuscation techniques [27]. 

The tool may also fail to function effectively with applications that deliberately obscure or 

encrypt their code, a common strategy used by advanced malware to evade detection. 

Furthermore, the evaluation was conducted on a relatively small dataset of 400 applications , 

which may not fully reflect real-world performance. 

In real-time applications, however, the Random Forest algorithm is expected to perform more 

efficiently due to its higher accuracy and robustness, making it a strong candidate for deployment 

in practical malware detection systems. 
 

11 Conclusion and future work 

Static analysis plays a crucial role in detecting and classifying Android applications by 

examining their code structure, permissions, API calls, and other essential features without requiring 

execution. This research investigated the effectiveness of static analysis techniques in detecting 

malicious applications. By analyzing manifest files, API usage, and other key static features, the study 

demonstrated that static analysis provides a proactive approach to malware detection. 

The findings confirm that static features can be effectively used for early threat detection. However, 

they also highlight certain limitations, particularly against sophisticated malware that employs code 

obfuscation or dynamic behavior, where dynamic analysis becomes essential. The processed features 

in this static investigation, especially API calls and manifest files, continue to be preferred by security 

experts, underlining their significance in Android malware detection [27]. 

As part of future work, efforts are directed toward enhancing the static analysis component to extract a 

broader range of features beyond permissions, thereby improving classification accuracy. In parallel, 

the development of a dynamic analysis framework is underway, where applications will be executed 

in a controlled environment to monitor requested permissions, intents, and behavioral patterns during 

runtime, providing a more comprehensive detection mechanism against advanced and evasive 

malware. 
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