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Abstract

Efficient detection of foliar diseases in cassava (Manihot esculenta) is essential for sustaining crop
productivity and ensuring food security, particularly in regions vulnerable to environmental stress.
However, accurate identification remains a challenge due to the widespread occurrence of diseases
such as Cassava Mosaic Disease (CMD), Cassava Bacterial Blight (CBB), and Cassava Brown Streak
Disease (CBSD), which continue to threaten cassava yields. This study addresses two major obstacles
in cassava disease classification—uneven image quality and imbalanced class distribution—by
implementing Contrast Limited Adaptive Histogram Equalization (CLAHE) and the Synthetic
Minority Over-sampling Technique (SMOTE). A publicly available dataset from the Cassava Leaf
Disease Classification competition on Kaggle was used, and two pretrained convolutional neural
networks, EfficientNetV2B2 and DenseNet169, were fine-tuned through transfer learning. The images
were resized, enhanced using CLAHE, and augmented before being split into training, validation, and
test sets. Both models were trained for 10 epochs using identical configurations. Results indicate that
EfficientNetV2B2 achieved higher classification accuracy (88.1%) than DenseNet169 (86.4%), with
CLAHE contributing a 2-3% improvement in accuracy. While these results are slightly lower than
those reported in previous studies employing extended training durations and advanced techniques
such as focal loss, the lightweight approach presented here proves effective under computational
constraints. The findings demonstrate the feasibility of developing scalable and resource-efficient
disease detection systems, especially for mobile or edge devices. Future research should focus on
longer training schedules, advanced loss functions, and validation using field-acquired images to
further improve model performance in real-world agricultural settings.
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1 Introduction

The global food crisis is becoming increasingly critical, driven by intersecting pressures such as
geopolitical conflicts, economic instability, and the intensifying effects of climate change. According
to the Global Report on Food Crises (FSIN, 2024), approximately 238 million individuals currently
suffer from acute food insecurity, marking a 10% increase from the previous year. One promising
avenue for strengthening food security, particularly in tropical regions, lies in the optimization of
cassava (Manihot esculenta) cultivation. Cassava is a drought-tolerant, high-starch tuber crop capable
of thriving in marginal soils and serves as a dietary staple for over 800 million people globally [1].

Despite its strategic importance, cassava production is frequently hindered by foliar diseases such
as Cassava Mosaic Disease (CMD), Cassava Bacterial Blight (CBB), and Cassava Brown Streak
Disease (CBSD), all of which significantly reduce yield potential [2]. Consequently, early detection of
these diseases is essential to ensure sustainable cassava production. In the context of precision
agriculture, deep learning—particularly through the application of Convolutional Neural Networks
(CNNs)—has demonstrated efficacy in automating digital image classification tasks [3]. However, its
practical deployment in agricultural diagnostics is often challenged by variations in image quality and
imbalanced class distributions. Poor image quality can impair feature extraction [4], while class
imbalance may bias the model toward dominant categories [5]. To address these limitations, this study
integrates two key strategies: image enhancement using Contrast Limited Adaptive Histogram
Equalization (CLAHE) to improve visual feature clarity, and class balancing via resampling
techniques. These approaches are implemented using two state-of-the-art CNN architectures—
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EfficientNetV2B2 and DenseNet169—both recognized for their efficiency in processing complex
visual data with relatively low computational demands.

The primary objective of this research is to develop a cassava leaf disease classification model
that is resilient to variability in both image quality and class distribution. Specifically, the study
examines: (1) the impact of image enhancement on classification accuracy; (2) the influence of class
imbalance and mitigation strategies; (3) the effectiveness of combining CLAHE with resampling
techniques; and (4) comparative performance analysis between EfficientNetV2B2 and DenseNet169.
The dataset utilized in this research is sourced from a publicly available collection on Kaggle [6],
comprising five disease classes and one healthy leaf class. This study deliberately excludes ensemble
modeling and cross-validation to maintain a focused evaluation of data quality and class distribution
effects.

Moreover, the findings reinforce prior research emphasizing the significance of class balancing
[5], the role of image quality [4], and the utility of DenseNet architectures for plant disease detection
[3]. Additional support for the applied techniques is provided by [7] and [8], who underscore the
effectiveness of data augmentation and transfer learning in real-world image classification.
Accordingly, this study is positioned to contribute both theoretically to the advancement of CNN
applications in digital agriculture and practically to the development of accurate, scalable systems for
early disease detection in crops

2  Literature Review

Digital image classification is a process that involves categorizing images based on visual
attributes such as color, texture, and structural patterns [9]. In recent years, this task has been
increasingly automated through the use of Convolutional Neural Networks (CNNSs), which are capable
of hierarchically extracting features from raw image data [3], [10]. Within the domain of plant disease
detection particularly for cassava leaves two persistent challenges are poor image quality and class
imbalance. To address the former, Contrast Limited Adaptive Histogram Equalization (CLAHE) is
frequently employed to enhance local contrast in images while minimizing the risk of amplifying
noise [5], [11].

To mitigate the effects of skewed class distributions, techniques such as oversampling, under
sampling, and class weight adjustments are implemented to reduce bias toward majority classes and
improve overall classification fairness [3], [12]. Moreover, data augmentation strategies—such as
image rotation, flipping, and zooming are applied to enrich the variability of training samples and
improve model generalization [8].

In scenarios involving limited datasets, transfer learning has emerged as a viable approach by
fine-tuning pretrained architectures such as EfficientNet and DenseNet on domain-specific image data
[7], [13]. EfficientNetV2B2, in particular, integrates MBConv and Fused-MBConv modules to
optimize training efficiency [14], while DenseNet169 leverages densely connected layers to facilitate
more effective information propagation across the network [15].

Model performance in such applications is commonly evaluated using a suite of metrics,
including accuracy, precision, recall, F1-score, and confusion matrix. These metrics are especially
critical in imbalanced classification tasks, as they offer a more nuanced and holistic assessment of
predictive reliability [16].

3 Research Method

This study employed an experimental quantitative approach to evaluate the performance of two
deep learning architectures EfficientNetV2B2 and DenseNet169 for image-based classification of
cassava leaf diseases. The models were assessed using a publicly available dataset from Kaggle, titled
Cassava Leaf Disease Classification, comprising images categorized into five distinct classes:
Cassava Mosaic Disease (CMD), Cassava Bacterial Blight (CBB), Cassava Green Mite (CGM),
Cassava Brown Streak Disease (CBSD), and Healthy.

The dataset was obtained directly from the official Kaggle platform and partitioned into three
subsets using a stratified sampling method to ensure balanced class distribution across data splits:
70% for training, 20% for validation, and 10% for testing. Prior to model training, a comprehensive
preprocessing pipeline was implemented, which included: (1) resizing all images to 224 x 224 pixels
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to conform to model input requirements; (2) enhancing contrast using Contrast Limited Adaptive
Histogram Equalization (CLAHE); (3) applying data augmentation techniques such as rotation,
flipping, zooming, and brightness adjustment to increase data diversity and improve generalization;
and (4) employing resampling techniques to address class imbalance within the training set.

Model training was conducted independently for both architectures using default training
configurations from the TensorFlow and Keras libraries. Performance evaluation was carried out on
both validation and testing sets using standard classification metrics, including accuracy, precision,
recall, and F1-score. Additionally, confusion matrices were generated to visualize classification
performance across individual classes. This methodological framework was designed to provide a
rigorous comparison of each model’s ability to accurately and consistently classify cassava leaf
diseases.

4 Results and Analysis

This section presents the results obtained from training and evaluating the proposed cassava leaf
disease classification models. It begins with a description of the dataset and the data preparation steps,
followed by the implementation of the deep learning architectures and the analysis of their
performance across various evaluation metrics.

Particular attention is given to how the applied preprocessing techniques—Contrast Limited
Adaptive Histogram Equalization (CLAHE) and the Synthetic Minority Over-sampling Technique
(SMOTE)—contributed to model effectiveness, especially under the constraints of limited
computational resources. Through this discussion aims to highlight not only the technical outcomes
but also the practical implications of deploying lightweight, transferable models for plant disease
detection in real-world agricultural settings.

4.1 Dataset Description and Data Preparation
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Figure 1 Initial class distribution in the dataset before stratified splitting

Based on Figure 1, this study employed a publicly available dataset from the Cassava Leaf
Disease Classification competition hosted on the Kaggle platform, developed by Mwebaze [6]. The
dataset comprises 5,656 images of cassava leaves categorized into five distinct classes: Cassava
Bacterial Blight (CBB), Cassava Brown Streak Disease (CBSD), Cassava Green Mite (CGM),
Cassava Mosaic Disease (CMD), and healthy leaves (Healthy). To ensure proportional representation
of each class, the dataset was stratified into three subsets: 72% for training, 18% for validation, and
10% for testing.

Initial analysis revealed a substantial class imbalance, with CMD accounting for 47% of the
training data, while CBB and Healthy classes represented only 8.2% and 5.6%, respectively (Table 1).
Such imbalance can introduce bias in model training, leading to overfitting toward the dominant class
and reduced sensitivity to minority classes [17], [18].

Table 1 Class distribution before SMOTE (training set)

Class Number of Samples Percentage (%)

CBB 335 8.2
CBSD 1,039 25.5
CGM 557 13.7
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Class Number of Samples Percentage (%)

CMD 1,914 47.0

Healthy 227 5.6

To mitigate this imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was
applied to the training set [5]. Post-SMOTE application, each class was represented equally with
1,914 samples (Table 2).
Table 2 Class distribution after SMOTE (training set)
Class Number of Samples Percentage (%)

cCBB 1,914 20.0
CBSD 1,914 20.0
CGM 1,914 20.0
CMD 1,914 20.0
Healthy 1,914 20.0
Total 9,570 100.0

Class balancing is essential in plant disease classification tasks, as it ensures equitable model
exposure to all disease types. This is particularly critical for minority classes like CBB, which,
although less prevalent in field conditions, must be accurately identified to prevent further spread
[19]. In addition to class balancing, a series of preprocessing steps were implemented to enhance
image quality and improve model performance.

4.2 Image Size and Format

At the initial stage of preprocessing, all images in the dataset were resized to 224 x 224 pixels
with three color channels (RGB). This resolution was selected to conform to the input size
specifications required by the EfficientNetV2B2 and DenseNet169 architectures. Standardizing image
dimensions is essential to ensure uniform input across the training process, thereby enabling
consistent feature extraction and optimal model performance [14], [20].

The RGB color format was preserved, as chromatic information is instrumental in
distinguishing among different cassava leaf diseases. Variations in leaf coloration, such as the
emergence of chlorotic or necrotic spots, serve as critical diagnostic indicators [4]. Therefore, this
preprocessing step not only satisfies architectural input requirements but also enhances the model’s
ability to accurately detect and classify visual disease symptoms.

4.3 Data Preprocessing Stages

The preprocessing phase in this study involved three primary steps: resizing images,
enhancing contrast, and applying data augmentation. All cassava leaf images were resized to 224 x
224 pixels with three RGB color channels to ensure compatibility with the input specifications of the
EfficientNetV2B2 and DenseNet169 architectures. This standardization was essential to maintain
consistent spatial dimensions and facilitate stable visual feature extraction during training [14], [20].

Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to improve local
contrast, particularly in images affected by uneven illumination. This enhancement technique
increases the visibility of fine disease patterns, thereby improving the model’s ability to detect and
classify symptoms accurately. As shown in Figure 2, the contrast-enhanced images display clearer
disease markers than the original versions. CLAHE has been reported to significantly improve visual
clarity in similar plant image datasets [11]. Besides that, the Synthetic Minority Over-sampling
Technique (SMOTE) was implemented to address class imbalance by generating synthetic samples
for minority classes. This method ensures equal representation of all classes in the training set, which
contributes to more balanced learning and reduces model bias. These two preprocessing strategies—
CLAHE and SMOTE—form the foundation of the data preparation process in this study and are
referenced throughout the text without repeating their detailed mechanisms.
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To further improve model generalization and reduce overfitting, data augmentation was
performed using horizontal and vertical flipping, random rotation, and zooming. These
transformations simulate real-world variations in leaf orientation and positioning commonly
encountered in agricultural environments. Such augmentation strategies have been shown to
significantly contribute to a model’s generalization capacity in image classification tasks [21].

Although CLAHE enhances important visual cues, it may also intensify artifacts in noisy
images. Therefore, appropriate tuning of preprocessing parameters is essential to align with the
inherent characteristics of the dataset. Overall, the preprocessing phase played a critical role in
producing a high-quality dataset, enabling more accurate and robust cassava leaf disease classification
within a digital agriculture framework.

4.4 Deep Learning Model Implementation

This study employed two contemporary convolutional neural network (CNN) architectures—
EfficientNetV2B2 and DenseNetl69—through a transfer learning approach, utilizing pretrained
weights from the ImageNet dataset. The classification layers of both models were modified to
accommodate five cassava leaf categories: Cassava Bacterial Blight (CBB), Cassava Brown Streak
Disease (CBSD), Cassava Green Mite (CGM), Cassava Mosaic Disease (CMD), and healthy leaves.
To optimize training efficiency, the early layers of each model were frozen, and fine-tuning was
applied exclusively to the final layers.

Model training was conducted on the Google Colab platform (Free Tier), utilizing a Tesla T4
GPU. Due to platform constraints in processing time and memory, training was limited to 10 epochs.
The training configuration included the Adam optimizer, a learning rate of 0.0001, a batch size of 32,
and categorical crossentropy as the loss function. Data augmentation techniques—horizontal and
vertical flipping, random rotation, and zooming—were also implemented to enrich visual diversity
and mitigate overfitting. EfficientNetV2B2 was selected for its high parameter efficiency and fast
convergence, while DenseNet169 was chosen for its dense inter-layer connections, which support
enhanced feature propagation and extraction. As presented in Table 3, both models demonstrated
satisfactory initial performance in adapting to the cassava leaf dataset, despite the constrained number
of training epochs.

Table 3 Model training parameters

Parameter Value

Optimizer Adam

Learning rate 0.0001

Batch size 32

Epochs 10

Loss function Categorical Crossentropy
Data augmentation Flip, rotate, zoom

Input size 224 x 224 x 3

Output classes 5
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Despite the promising performance, the classification accuracy remained below that reported
by [5], who achieved over 93% accuracy through extended training (>50 epochs) and advanced
methods including focal loss and class weight adjustments. This gap highlights the influence of
resource limitations and restricted training time on model performance.

Nonetheless, the findings confirm that transfer learning remains a viable and effective
strategy for agricultural image classification, especially in resource-constrained environments. While
performance has not yet reached its full potential, the approach offers a practical foundation for
further optimization and real-world application in plant disease detection systems.

4.5 Results and Discussion: Model Evaluation

This study assessed the performance of two pretrained convolutional neural network
models—EfficientNetVV2B2 and DenseNet169—in classifying five types of cassava leaf conditions.
With training limited to 10 epochs, EfficientNetV2B2 achieved a higher classification accuracy
(88.1%) compared to DenseNet169 (86.4%), as shown in Table 4.

Further evaluation using standard classification metrics—precision, recall, and F1-score—
also favored EfficientNetV2B2. As shown in Table 5, EfficientNetV2B2 achieved a precision of
0.884, recall of 0.879, and F1-score of 0.880. These scores slightly outperformed DenseNet169,
which obtained a precision of 0.862, recall of 0.858, and F1-score of 0.859. These results indicate that
EfficientNetV2B2 provided more stable and consistent performance under the given training
constraints.

Table 4 Accuracy of each model

Model Accuracy (%)
EfficientNetV2B2 88.1
DenseNet169 86.4

Table 5 Evaluation metrics for each model
Model Precision Recall F1-Score
EfficientNetv2B2 0.884 0.879 0.880
DenseNet169 0.862 0.858 0.859
The confusion matrix (Figure 3) reveals that EfficientNet\VV2B2 classified dominant classes
such as Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), as well as
healthy leaves, with accuracies of 91%. This performance highlights the effectiveness of CLAHE
preprocessing, particularly in enhancing feature visibility in images with uneven illumination.
However, classification errors persisted for the Cassava Green Mite (CGM) class, which was often
misclassified as CBSD or CBB—Ilikely due to visual similarities in disease symptoms.

Confusion Matrix - EfficientNetV2B2 (SMOTE) Confusion Matrix - DenseNet169 (SMOTE)
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Figure 3 Visualization of the confusion matrix from the EfficientNetV2B2 and densenet169
models after SMOTE
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In contrast, DenseNet169 showed slightly lower accuracy, especially in identifying healthy
leaves (86%), possibly due to its limited feature learning capacity under the constrained training
schedule. Compared to [5], which reported accuracy above 93% using longer training durations (>50
epochs) and advanced strategies such as focal loss and class weight adjustment, the results of this
study were moderately lower.

Nevertheless, the findings are promising considering the limited computational resources and
simplified training configurations. EfficientNetV2B2 demonstrated greater efficiency and
performance stability, supporting its potential for lightweight and scalable deployment in real-world
agricultural scenarios, especially for image-based early disease detection systems.

4.6 Ablation Study: The Effect of CLAHE

An ablation study was conducted to assess the contribution of the Contrast Limited Adaptive
Histogram Equalization (CLAHE) technique to the performance of cassava leaf disease classification
models. Two convolutional neural network architectures, EfficientNetV2B2 and DenseNet169, were
evaluated under two preprocessing conditions: with and without the application of CLAHE. To isolate
the effect of CLAHE, all other variables—model architecture, class balancing via SMOTE, and
training configurations including learning rate, batch size, and number of epochs—were held constant.

Table 6 demonstrated a consistent improvement in classification accuracy when CLAHE was
employed. Specifically, EfficientNetV2B2 showed an increase in accuracy from 85.2% to 88.1%,
while DenseNet169 improved from 83.9% to 86.4%. This 2—3% enhancement suggests that CLAHE
effectively improves the local contrast of cassava leaf images, thereby facilitating more accurate
extraction of discriminative features by the deep learning models. These benefits are particularly
evident in images with uneven illumination or subtle texture variations.

The findings are consistent with those reported by the study [11], who concluded that CLAHE
enhances the visibility of critical visual patterns in plant imagery and improves model robustness
under suboptimal lighting conditions. Thus, integrating CLAHE into the preprocessing pipeline can
be considered a beneficial strategy for improving deep learning performance in agricultural image
classification tasks.

Table 6. Performance of models with and without CLAHE

Model CLAHE Accuracy (%)
EfficientNetV2B2 No 85.2
EfficientNetV2B2 Yes 88.1
DenseNet169 No 83.9
DenseNet169 Yes 86.4

4.7 Comparison with Previous Research

This study employed pretrained CNN architectures—EfficientNetV2B2 and DenseNet169—
integrated with CLAHE and SMOTE, to classify cassava leaf diseases. To evaluate the effectiveness
of this approach, the results were compared with those reported by Sambasivam and Opiyo [5], who
developed a custom CNN architecture from scratch and implemented more advanced training
strategies, including Focal Loss, class weight adjustments, and extended training durations of over 50
epochs.

As summarized in Table 7, Sambasivam and Opiyo achieved classification accuracies
exceeding 93%, while this study reported maximum accuracies of 88.1% and 86.4% for
EfficientNetV2B2 and DenseNet169, respectively. The performance gap can be attributed to several
factors, notably the limited training duration (10 epochs) , and the absence of techniques such as Focal
Loss, which are known to improve model sensitivity to underrepresented classes. While pretrained
models offer advantages in terms of training efficiency and generalization, custom CNNs specifically
designed for cassava leaf imagery may yield higher accuracy when fully optimized for the task.

The key novelty lies in the combination of CLAHE and SMOTE within a transfer learning
framework using lightweight pretrained models, a strategy not explored in the comparative study.
This approach was deliberately designed for efficiency, making it suitable for deployment on low-
resource platforms such as mobile or edge devices. By leveraging pretrained models, this research
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demonstrates that effective classification can still be achieved without extensive training resources or
model complexity.

Furthermore, the absence of transfer learning in previous works highlights a gap this study
aims to address. Future research could explore hybrid solutions—merging the flexibility of custom
architectures with the efficiency of pretrained backbones—for even better performance tailored to
agricultural image datasets.

Table 7 Performance comparison with previous studies

Study Model Architecture Techniques Used Accuracy (%)
Sambasivam & Opiyo (2021) CNN from scratch CLAHE, SMOTE, Focal Loss >93.0
This study (EffNetV2B2) Pretrained CLAHE, SMOTE (no focal loss) 88.1
This study (DenseNet169) Pretrained CLAHE, SMOTE (no focal loss) 86.4

5 Conclusion

This study demonstrates that combining pretrained CNN models—EfficientNetV2B2 and
DenseNet169—with CLAHE and SMOTE significantly improves cassava leaf disease classification
accuracy. EfficientNetV2B2 achieved the highest performance (88.1%), supported by enhanced image
contrast from CLAHE and balanced class representation from SMOTE. Although the results did not
surpass the >93% accuracy reported in [5], the proposed lightweight approach proved effective under
limited computational resources. However, limitations remain: the short training duration (10 epochs),
absence of advanced loss functions (e.g., focal loss), and lack of validation using field-acquired
images. Future research should address these aspects to enhance model robustness and
generalizability. Despite constraints, this approach shows strong potential for real-world deployment
in mobile and web-based precision agriculture applications.
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