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Abstrak 
Bitcoin, as a decentralized digital currency, experiences significant price fluctuations, making 

accurate price forecasting a complex yet valuable challenge. Price forecasting is essential in economic 

decision-making, serving as the foundation for portfolio construction, risk analysis, and investment 

strategy development. Bitcoin's high volatility makes it an attractive asset for investors but also poses 

significant risks, necessitating sophisticated forecasting tools and models to mitigate uncertainty. The 

XGBoost model in regression is widely known and effectively applied to handle time series data. This 

model can capture complex nonlinear relationships in Bitcoin price data, providing more accurate 

forecasts than traditional statistical models. The research methodology includes data collection, data 

preprocessing, stationarity checking, differencing, feature engineering, data division into training and 

testing sets, XGBoost model training, prediction and evaluation, and result visualization. The research 

results show that the XGBoost model achieves a Mean Absolute Error of 8.26% and an RMSE of 

9.87%, indicating excellent forecasting accuracy. The implications of this research could potentially 

assist investors and traders in improving their strategies and risk management. 
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1 Introduction 

Currently, the global financial landscape is undergoing a revolutionary transformation due to the 

emergence of cryptocurrencies, with Bitcoin as its pioneering entity. As a leading digital asset, 

Bitcoin has garnered significant attention from investors, academics, and regulators worldwide [1]. 

Bitcoin's high price volatility presents both challenges and attractive investment opportunities, driving 

the imperative to develop precise and reliable prediction models [2]. 

The cryptocurrency market has unique characteristics that distinguish it from conventional 

financial markets. The absence of clear seasonal patterns and a number of unrealistic constraints 

complicate accurate forecasting using traditional statistical methods [3]. Therefore, Bitcoin price 

prediction requires a more in-depth approach that can identify complex patterns, temporal 

dependencies, and external elements that can influence price changes [4]. 

Bitcoin's inherent volatility distinguishes it from conventional investment assets, necessitating 

the adoption of more sophisticated forecasting methodologies [5]. Current research is frequently 

constrained to the utilization of sentiment indices and price data, thereby establishing a notable 

research deficiency in the integration of more varied and advanced data sources and techniques to 

augment prediction precision [4]. 

Previous research has documented the successful utilization of time series models, such as 

ARIMA, and machine learning models, like Support Vector Regression, for stock price prediction [6], 

[7]. However, these conventional models might exhibit limitations in capturing the intricate patterns 

and nonlinear dependencies inherent in Bitcoin's price data. Additionally, artificial neural networks 

have demonstrated considerable promise in forecasting applications. Several studies indicate that 

recurrent neural networks provide superior accuracy and robustness compared to standard neural 

networks [8]. Furthermore, Long Short-Term Memory, a variation of recurrent neural networks, has 

been employed for stock price prediction, achieving commendable RMSE results. 

This research endeavors to tackle these complexities by investigating the efficacy of XGBoost, a 

potent machine learning algorithm, for forecasting Bitcoin prices. The approach integrates time series-

derived features with Fourier-based decomposition to effectively capture seasonal variations. Machine 
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learning methodologies offer several benefits over traditional statistical techniques, including their 

capacity to handle nonlinear and high-dimensional datasets, discern intricate relationships, and adapt 

to evolving market dynamics. Specifically, XGBoost has emerged as a valuable tool for forecasting 

due to its inherent gradient boosting, regularization capabilities, and proficiency in managing missing 

data. 

The structure of this research consists of an introduction that outlines the background and 

motivation of the study, followed by a literature review that discusses the concepts of Bitcoin, 

decentralization, and the XGBoost model. The methodology section describes the implementation 

stages of the XGBoost algorithm, time series features, and Fourier-based decomposition. The results 

and discussion section presents interpretations of empirical results, experiments, and in-depth 

analysis. Finally, the conclusion summarizes the main findings, research implications, and potential 

directions for future research. 

2 Literature Review 

The literature review is structured to cover the following key areas: Bitcoin and Decentralization, 

Machine Learning, XGBoost for Time Series Forecasting, Feature Engineering for Time Series Data, 

Fourier Transform for Seasonality Decomposition, Model Evaluation and Performance Metrics, 

Differencing, Resampling Methods for Imbalanced Data, and Dimensionality Reduction. Each of 

these areas will be discussed in detail below: 

2.1 Bitcoin and Decentralization  

Bitcoin, introduced in 2008 by the anonymous entity Satoshi Nakamoto, represents an innovative 

decentralized peer-to-peer digital currency system that facilitates online transactions without the 

mediation of a central authority. Bitcoin's decentralized architecture is implemented through 

blockchain technology, a distributed public ledger that records all transactions on various computer 

nodes [8]. Blockchain ensures transparency, security, and immutability, making it highly resistant to 

censorship and manipulation. Bitcoin's decentralization allows it to operate independently of 

conventional financial institutions and governmental authorities, giving users a higher degree of 

control and autonomy over their assets. 

Blockchain technology, which forms the foundation for Bitcoin, plays a central role in the 

creation of cryptocurrencies [9]. This system offers a decentralized and transparent approach to 

recording and verifying transactions [10]. 

Blockchain technology has key features including transparency, security, and decentralization. 

Blockchain records all transactions publicly and permanently, enhancing financial security and 

transparency. The distribution of blockchain technology across various computers eliminates the need 

for a centralized authority, further reducing the risk of fraud and manipulation. 

Bitcoin's decentralization has attracted significant interest and driven widespread adoption for 

several reasons. First, Bitcoin offers an alternative to conventional financial systems regulated by 

central banks and financial institutions. Second, Bitcoin provides a sensor-resistant and permissionless 

means of conducting transactions, allowing individuals to participate in the global economy without 

restrictions. Bitcoin has stimulated discussions among economists regarding its ability to disrupt 

existing payment and monetary systems, as well as providing extensive data on the behavior of agents 

and the Bitcoin system [11]. 

2.2 Machine Learning 

Machine learning, an area within artificial intelligence, is dedicated to creating systems capable 

of learning from data without requiring explicit programming. Its algorithms are widely employed for 

tasks such as classification, regression, clustering, and dimensionality reduction. The ability of 

machine learning algorithms to learn from experience and emulate human cognitive processes has 

significantly increased interest in both machine learning and artificial intelligence [12]. Generally, 

these algorithms are divided into supervised, unsupervised, and reinforcement learning categories. 

Supervised learning algorithms are trained using labeled datasets, which consist of corresponding 

inputs and outputs. The algorithm then learns to map these inputs to their respective outputs, enabling 

it to make predictions on new, unseen data [13]. 

Unsupervised learning algorithms are trained on unlabeled datasets, requiring them to discern 

inherent patterns and structures. In contrast, reinforcement learning algorithms learn through 

interaction with an environment, receiving feedback via rewards or penalties. The rapid evolution of 
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machine learning in recent years has been propelled by the increasing availability of data, 

advancements in computational power, and the development of novel algorithms [14]. 

2.3 XGBoost for Time Series Forecasting 

XGBoost, an acronym for Extreme Gradient Boosting, is a highly effective and powerful 

machine learning algorithm employed for classification and regression challenges. It operates on the 

principle of gradient boosting, an ensemble methodology that synergistically combines weak models, 

typically decision trees, in a sequential manner to systematically reduce errors generated by preceding 

models. XGBoost is favored for its speed, accuracy, and scalability, establishing it as a preferred 

choice for data scientists and machine learning specialists. 

To prevent overfitting and improve generalization performance, the XGBoost algorithm 

implements a series of techniques. These techniques involve L1 and L2 regularization, which penalize 

the objective function to limit model complexity, as well as tree pruning, which limits the depth and 

complexity of individual trees. Furthermore, XGBoost supports the handling of missing values, 

eliminating the need for data imputation and allowing the algorithm to work directly with incomplete 

datasets. 

One of the main advantages of XGBoost is its ability to capture nonlinear interactions and 

complex dependencies in data [15]. Through additive model construction, XGBoost can learn 

complex relationships between features and target variables, which is often difficult for traditional 

linear models to achieve. 

In various domains such as finance, economics, and meteorology, XGBoost has been extensively 

applied to time series forecasting tasks. For example, the algorithm has been used to predict stock 

prices, energy demand, and retail sales volume. XGBoost's performance in these tasks is often 

superior, frequently surpassing traditional statistical methods and other machine learning algorithms 

[16]. 

XGBoost has emerged as a highly effective algorithm for forecasting, often outperforming 

ARIMA models in terms of accuracy and its ability to capture complex relationships. By employing 

machine learning algorithms within a gradient boosting framework, XGBoost facilitates parallel tree 

boosting, thereby providing fast and accurate solutions for various data science problems [17]. To 

prevent overfitting, XGBoost utilizes regularization techniques, such as LASSO and Ridge, to 

penalize more complex models [18]. 

Optimizing essential parameters such as gamma, subsample, nrounds, max_depth, eta, 

colsample_bytree, and min_child_weight using the "xgboost" package, as well as 10-fold cross-

validation, has been shown to significantly improve the performance of predictive models [19]. In the 

context of machine learning models, XGBoost has become a major competitor, consistently achieving 

optimal performance in various applications [20]. XGBoost not only serves as a stand-alone 

prediction tool but is also frequently integrated into actual production workflows to predict ad click-

through rates. Moreover, XGBoost is a top choice in ensemble methods and has been used in various 

competitions, including the Netflix challenge. 

2.4 Feature Engineering for Time Series Data 

Time series data contains valuable information that can be extracted through feature engineering. 

Lag features, which incorporate historical values from the time series, are crucial for capturing 

temporal dependencies and patterns in the data. As stated in [21], the XGBoost algorithm 

demonstrates superior accuracy and stability compared to other algorithms, making lag features a 

valuable tool for enhancing the predictive performance of models.  

In addition to lag features, rolling statistics such as moving averages and standard deviations can 

provide additional insights into the trends and volatility of the time series [22]. Feature engineering 

involves leveraging domain expertise to derive meaningful features from raw data through data 

transformation [23]. This process is critical, as the performance of machine learning algorithms is 

significantly influenced by how data is presented to them, impacting the effectiveness of the trained 

model [23]. 

Furthermore, the incorporation of Fourier-based features can aid in capturing seasonal patterns in 

time series data. Rolling statistics, including moving averages and standard deviations, can provide 

valuable insights into trends and volatility in time series, thus providing a basis for identifying and 

quantifying trends and changes in the data. The combination of these features with powerful machine 

learning techniques such as XGBoost results in comprehensive and accurate forecasting models [24]. 
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2.5 Fourier Transform for Seasonality Decomposition 

Fourier transformation is a robust mathematical tool for analyzing and representing signals in the 

frequency domain [25]. This transformation decomposes signals into distinct frequency components, 

facilitating the identification and quantification of periodic patterns. 

In the context of time series forecasting, Fourier transformation can be employed to deconstruct 

time series into distinct seasonal components. Through calculating high-frequency components and 

dominant periods from time series samples derived from various benchmark datasets, Fourier analysis 

indicates that real-world datasets often rely on more than one seasonal pattern [26]. 

Fourier coefficients, resulting from the Fourier transformation, serve to measure both the 

amplitude and phase of each frequency component. These coefficients can then be utilized as features 

in machine learning models to capture potential seasonal effects [27]. Integrating these seasonal 

components into forecasting models has the potential to significantly enhance prediction accuracy. 

Furthermore, spectral analysis, enabled by Fourier transformation, facilitates the identification of 

dominant frequencies along with their relative strengths. This enables a thorough understanding of 

seasonal behavior within the data. 

In practical implementations, the Fourier transformation is applied to time series data, and the 

resulting Fourier coefficients are utilized as additional features in the XGBoost model. The 

combination of XGBoost's ability to capture nonlinear relationships and the effectiveness of Fourier 

transformation in decomposing seasonality results in a robust and flexible forecasting model. By 

applying a moving average filter, noise can be reduced through the use of average values of the data 

obtained [28]. 

2.6 Model Evaluation and Performance Metrics 

Model evaluation and the selection of appropriate performance metrics are critical in the time 

series forecasting process. Several commonly used metrics include Mean Absolute Error, Mean 

Squared Error, and Root Mean Squared Error. These metrics provide quantitative measures of the 

predictive accuracy of a model by quantifying the magnitude of errors between predicted and actual 

values. 

Mean Absolute Error is the average of the absolute differences between the forecasted values and 

the actual values, offering a clear and interpretable measure of forecast error. MAE indicates the 

average magnitude of errors and is less sensitive to outliers compared to squared error metrics [29], 

[30]. The formula for Mean Absolute Error is presented as shown in equation (1)  

MAE  = 
1

𝑛
∑ |𝑋𝑖 −  𝑋̂𝑖|𝑛

𝑖=0  () 

Mean Absolute Percentage Error expresses accuracy as a percentage, facilitating ease of 

interpretation and comparison across various time series. Mean Absolute Percentage Error is 

particularly useful for assessing forecasting performance in financial applications where relative 

errors are more informative than absolute errors [29]. The formula for Mean Absolute Percentage 

Error is presented as given in equation (2) 

MAPE  = 
100

𝑛
∑

|𝑋𝑖− 𝑋̂𝑖|

𝑋𝑖

𝑛
𝑖=1  () 

Mean Squared Error is a loss function calculated as the average of the squared differences 

between target and predicted values. Root Mean Squared Error, which is the square root of the MSE 

value, is also widely utilized. Mean Squared Error measures the average of the squares of the errors, 

providing a quadratic scoring rule that penalizes larger errors more heavily [29][30]. The formula for 

Mean Absolute Percentage Error is presented as equation (3)  

RMSE  = √
1

𝑛
∑ (𝑋𝑖 −  𝑋̂𝑖)2𝑛

𝑖=1  () 

The coefficient of determination, Mean Squared Error, Root Mean Squared Error, and Mean 

Absolute Error are some of the metrics used to evaluate the performance of each model. In addition to 
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error metrics, graphical visualizations such as actual versus predicted plots and residual plots can 

provide valuable insights into model performance and identify potential areas for improvement [29]. 

2.7 Differencing 

Differencing is a technique used to make time series stationary by removing changes in the level 

of the series, thus stabilizing the mean of the time series and reducing or eliminating trends and 

seasonality. If the data is not stationary with respect to the mean, then differencing is performed [30]. 

Differencing calculates the difference between successive observations, which is often effective 

in stabilizing the mean of the time series and reducing or eliminating trends and seasonality. The use 

of non-stationary data requires a differencing or transformation process to ensure that the data 

becomes stationary, thus meeting the assumptions required for ARIMA modeling [31]. However, 

differencing can cause the loss of some important information, especially if applied excessively. 

Differencing consists of 3 types: simple differencing, seasonal differencing, and double 

differencing. Simple differencing is a differencing method that involves subtracting the value of the 

previous period from a series by the current value of the series.[34] This process is particularly 

effective for removing linear trends[35]. The formula for simple differencing can be expressed as 

given in equation (4)  

𝑌𝑡
′ =  𝑌𝑡 −  𝑌𝑡−1 () 

Seasonal differencing is employed to mitigate seasonal variations and ascertain the time period. 
This technique involves subtracting an observation from a previous observation from the same season 
of the previous year. This method is crucial when dealing with time series that exhibit recurring 
patterns at fixed intervals, such as monthly or quarterly seasonality[35]. The formula for seasonal 
differencing is expressed as given shown in equation (5)  

𝑌𝑡
′ =  𝑌𝑡 −  𝑌𝑡−𝑠 () 

Double differencing entails differencing the data twice, rendering it highly effective when 

dealing with time series exhibiting both trends and seasonality. Double differencing can remove both 

a linear trend and a seasonal trend that might otherwise obscure underlying patterns [36]. However, it 

is crucial to avoid over-differencing, as this can lead to the loss of valuable information and result in a 

fitted model that deviates significantly from the true underlying data generating process [34] [35]. The 

formula for double differencing can be expressed as show in equation (6) 

 𝑌𝑡
′′ =  𝑌𝑡

′ −  𝑌𝑡−1
′ = (𝑌𝑡 −  𝑌𝑡−1) − (𝑌𝑡−1 −  𝑌𝑡−2) () 

2.8 Resampling Methods for Imbalanced Data 

Resampling data can be grouped into three types: oversampling, undersampling, and a 

combination of both. In scenarios where data is imbalanced, resampling techniques can be used to 

address this issue. Oversampling involves adding copies of minority class examples, while 

undersampling involves removing majority class examples [33]. Resampling methods can help 

improve model performance by balancing class distribution and preventing models from becoming 

biased towards the majority class. 

2.9 Dimensionality Reduction 

Dimensionality reduction can be implemented as a preprocessing step to enhance classification 

models [34]. It involves reducing the number of features while retaining essential information [34]. 

Principal Component Analysis is a method employed for dimensionality reduction during 

preprocessing [35].  

Principal Component Analysis is a dimensionality reduction technique applicable for reducing 

the number of features in microarray data [36]. Data reduction is a technique used to decrease the 

amount or dimensions of a dataset, enhancing the efficiency of model learning, improving model 

performance, preventing overfitting, and rectifying skewed data distributions [37]. 

3 Proposed Method 

This section outlines the methodology employed for forecasting Bitcoin prices, utilizing 

XGBoost in conjunction with time series features and Fourier-based seasonality. It encompasses an 
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understanding of the data, data preprocessing steps, the model architecture, and evaluation metrics. 

The research methodology is visually depicted in Figure 1. 

 

Fig. 1. Research methodology 

Data Collection, Bitcoin price information was obtained from Yahoo Finance, covering the 

period from September 17, 2014, to July 15, 2025. This historical data consists of opening prices, high 

prices, low prices, closing prices, and daily trading volume. Yahoo Finance is an online platform that 

provides financial data, news, and analysis, including stock price quotes, press releases, and financial 

reports. This data is then processed through data cleaning techniques, including handling missing 

values, outliers, and inconsistencies.  The dataset consists of 'date' and 'close' attributes, with the time 

column set as the index. 

ACF Plot are used to determine the MA order, while PACF graphs are used to determine the AR 

order. Through the ACF and PACF graphs, it can be determined whether the data is stationary or not. 

Data that is not stationary requires a differencing process.  

Data that does not meet stationarity criteria requires transformation or a differencing process to 

ensure that stationarity assumptions are met. In this study, the data underwent single differencing to 

achieve stationarity. However, it should be noted that in certain situations, differencing can be 

performed repeatedly if stationarity has not been achieved after the first application. Feature 

engineering is done through several techniques such as Fourier transformation, lag features, and 

statistical window features to extract relevant information from time series data.  

Lag features are very useful for time series datasets because they can be used to observe the 

correlation between current and previous values. Lag features are created by shifting historical data by 
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several periods. The lags used are one, two, three hundred sixty-five, and one thousand four hundred 

sixty. Fourier Terms, to include seasonal components in the model,  

Fourier terms are generated using Fourier analysis. Because bitcoin has annual seasonality and 

halving season, the periods are set to three hundred sixty-five days and one thousand four hundred 

sixty days, and several pairs of sine and cosine terms are calculated to capture seasonal patterns.  

Rolling Features, rolling statistics such as moving averages and standard deviations are also 

included as features to provide information about Bitcoin price trends and volatility. Moving averages 

can be used to identify trends in time series data. Data is rolled with a window of 7 and 30 days.  

Date parts, to help the model learn different patterns over time, additional features such as day of 

the week, month of the year, and quarter of the year are extracted from the date column. To accurately 

evaluate model performance, the data is partitioned into training and testing sets.  

The data is divided into two parts, with 80% used for model training and 20% allocated for 

testing. This division ensures that the model is evaluated on unseen data to assess its ability to 

generalize to new data points.  

The XGBoost model is trained using the training data. Model parameters are optimized through 

cross-validation techniques, including learning rate, tree depth, number of estimators, subsample, 

gamma, and random_state.  

Evaluate Model, Model performance is evaluated on the test set using appropriate metrics such as 

Mean Squared Error, Root Mean Squared Error, and R-squared. The coefficient of determination, 

Mean Square Error, Root Mean Square Error, and Mean Absolute Error are some of the metrics used 

to evaluate the performance of each model.  

In addition to error metrics, graphical visualizations such as actual versus predicted plots and 

residual plots can provide valuable insights into model performance and identify potential areas for 

improvement [38]. 

4 Results and Analysis 

This section presents the experimental results of forecasting Bitcoin prices using XGBoost with 

time series features and Fourier-based seasonality. Bitcoin price data were sourced from Yahoo 

Finance, spanning from September 17, 2014, to July 15, 2025. The data were obtained through web 

scraping using the pandas datareader and yfinance packages. This historical data encompasses 

opening prices, high prices, low prices, closing prices, and daily trading volume. 

 
>>> import yfinance as yf 
>>> import pandas as pd 
>>> btc_data=yf.download("BTC-USD",start="2010-01-01",end="2025-07-15") 
>>> btc_data = btc_data[['Close']] 
>>> btc_data.index.name = 'Date' 

 

The Bitcoin data obtained from the program consists of columns such as date, high price, low 

price, opening price, closing price, and volume. This historical data is then processed through data 

preprocessing techniques, including handling missing values, outliers, and inconsistencies. 

In Data Preprocessing, missing values are addressed through imputation using previous values. 

In each data entry within the Bitcoin historical price table, the date column is set as an index to 

simplify the handling of empty values. Subsequently, transformations are applied to ensure 

stationarity, given that time series models often assume stationary conditions. The differencing 

process is carried out by subtracting the previous value from each data point. 

To identify the Moving Average and Autoregressive orders in the historical Bitcoin price data, 

Autocorrelation Function and Partial Autocorrelation Function plots are used. The ACF plot helps in 

identifying the MA order, while the PACF plot is used to determine the AR order. Through these two 

plots, it can be determined whether the analyzed data is stationary or not. The ACF and PACF plots 

can be visualized using the plot_acf and plot_pacf functions from the statsmodels.graphics.tsaplots 

package. 
>>> from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
>>> plt.figure(figsize=(14, 6)) 
>>> plt.subplot(1, 2, 1) 
>>> plot_acf(df['Close'].dropna(), lags=60, ax=plt.gca()) 
>>> plt.title('Autocorrelation (ACF) - Close') 
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>>> plt.subplot(1, 2, 2) 
>>> plot_pacf(df['Close'].dropna(),lags=60,method='ywm', ax=plt.gca()) 
>>> plt.title('Partial Autocorrelation (PACF) - Close') 
>>> plt.tight_layout() 
>>> plt.show() 

 

Based on the aforementioned function, the Autocorrelation Function values exhibit a gradual 

decline without any statistically significant values beyond the confidence limits, suggesting a strong 

but decelerating correlation. This condition indicates that the data is non-stationary due to the 

presence of long-term trends, where the influence of previous prices remains persistent. The Partial 

Autocorrelation Function values show a statistically significant spike at lag 1, followed by a decrease 

approaching zero. Movements at lag 2 and beyond are not significant, indicating a correlation 

between the current and previous data. The results from these plots can be observed in Figure 2. 

 

Fig. 2. Plot ACF and PACF 

To render the data stationary, differencing was performed once. Utilizing Python, a logarithmic 

transformation is applied using close_log = np.log, followed by differencing the transformed data with 

close_log_diff = close_log.diff(). Subsequently, any resulting null values are removed using the 

dropna() function. 
>>> btc_data['Close_log]=np.log(btc_data['Close']) 
>>> btc_data['diff_log']=btc_data['Close_log'].diff() 
>>> btc_data.dropna(inplace=True) 

 

Following confirmation of data stationarity and the absence of null values, the subsequent stage 

involves feature engineering. This process yields four primary features: Lag Features, Fourier Terms, 

Rolling Features, and Date Parts. 

Lag Features, The PACF results, indicating lags of 1 and 2, form the basis for establishing lag 

values. Furthermore, considering Bitcoin's unique characteristic as an asset with halving events 

occurring every four years, lags corresponding to the 365th and 1460th days are also incorporated 

[39]. 
>>> btc_data['lag_1']   = btc_data['diff_log'].shift(1) 
>>> btc_data['lag_2']   = btc_data['diff_log'].shift(2) 
>>> btc_data['lag_365'] = btc_data['diff_log'].shift(365) 
>>> btc_data['lag_1460']= btc_data['diff_log'].shift(1460) 

 

Fourier Terms, to incorporate seasonal components into the model, Fourier terms are generated 

using Fourier analysis. Given that Bitcoin exhibits annual seasonality and halving seasons, the periods 

are set to 365 days and 1460 days, and several pairs of sine and cosine terms are computed to capture 

seasonal patterns. 
>>> btc_data['sin_365'] =np.sin(2*np.pi* btc_data.index.dayofyear/365) 
>>> btc_data['cos_365'] =np.cos(2*np.pi* btc_data.index.dayofyear/365)   
>>> btc_data['sin_1460']=np.sin(2*np.pi* btc_data.index.dayofyear/1460) 
>>> btc_data['cos_1460']=np.cos(2*np.pi* btc_data.index.dayofyear/1460) 
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Rolling statistics, such as moving averages and standard deviations, are incorporated as features 

to provide insights into Bitcoin price trends and volatility. Specifically, moving averages with 

windows of 7 and 30 days are computed to capture short-term and medium-term trends in the price 

data. 
>>> btc_data['roll_mean_7'] = btc_data['diff_log'].rolling(7).mean() 
>>> btc_data['roll_std_7']  = btc_data['diff_log'].rolling(7).std() 
>>> btc_data['roll_mean_30']= btc_data['diff_log'].rolling(30).mean() 
>>> btc_data['roll_std_30'] = btc_data['diff_log'].rolling(30).std() 

 

Date Parts: Additional features such as the day of the week, month of the year, and quarter of the 

year are extracted from the date column to aid the model in learning distinct temporal patterns. 

 
>>> btc_data['dayofweek'] = btc_data.index.dayofweek 
>>> btc_data['month']     = btc_data.index.month 
>>> btc_data['day'].      = btc_data.index.day 

 

Subsequently, the data is partitioned into two variables, X and y. The X variable encompasses the 

core data, excluding the 'Close', 'Close_log', and 'diff_log' columns, and focuses on variables derived 

from feature engineering. The y variable stores the difference log and serves as the target variable for 

prediction. 
>>> X=btc_data.drop(columns=['Close','Close_log','diff_log']) 
>>> y = btc_data['diff_log'] 

 

Following feature engineering, the data undergoes partitioning into training and testing sets. The 

variables X and y are divided accordingly, yielding X_train, X_test, y_train, and y_test, which are 

then prepared for input into the XGBoost model. Additionally, the variable last_close_log is 

initialized to retain the final value from the close log, facilitating inverse scaling during evaluation. 

 
>>> split = int(0.80 * len(btc_data)) 
>>> X_train, X_test = X[:split], X[split:] 
>>> y_train, y_test = y[:split], y[split:]   
>>> last_close_log=btc_data['Close_log'].iloc[split-1] 

 

Following data preparation, the XGBoost model is trained employing the subsequent parameters: 

n_estimators=1000, learning_rate=0.05, max_depth=5, subsample=0.8, colsample_bytree=0.8, and 

random_state=42. The n_estimators parameter, set at 1000, signifies the construction of 1000 trees 

within the ensemble. A learning_rate of 0.05 is implemented to modulate the contribution of each tree 

to the final model, aiming to mitigate overfitting. A max_depth of 5 restricts the depth of each tree to 

manage model complexity. A subsample of 0.8 indicates that 80% of the training data will be utilized 

for training each tree, also with the intention of reducing overfitting. A colsample_bytree value of 0.8 

suggests that 80% of the features will be employed to train each tree, further assisting in the reduction 

of overfitting. The parameter random_state=42 is employed to ensure reproducible results. Utilizing 

the XGBoost library, the model is fitted using X_train and y_train. 

 
>>> import xgboost as xgb 
>>> model = xgb.XGBRegressor( 
     n_estimators    =1000, 
     learning_rate   =0.01, 
     max_depth       =4, 
     Subsample       =0.8, 
     colsample_bytree=0.8, 
     Gamma           =0.1, 
     reg_alpha       =0.1, 
     reg_lambda      =1.0, 
     random_state    =42, 
     Verbosity       =1 
 ) 
>>> model.fit(X_train, y_train) 
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Following the training of the model, the subsequent phase involves generating predictions on the 

test set to derive the y_pred_logdiff variable. Given that the model predicts the logarithmic 

differences in price, these predictions are then converted back to the original price scale, utilizing the 

last logarithmic price value from the training data.  

The variable y_pred_price forecasts the exponential price values. These forecasts are 

subsequently compared against the actual prices in the test set to assess the model's performance. The 

evaluation is conducted using Root Mean Squared Error and Mean Absolute Error. 

 
>>> from sklearn.metrics import mean_squared_error, mean_absolute_error 
>>> y_pred_logdiff = model.predict(X_test) 
>>> y_pred_price   = np.exp(np.cumsum(y_pred_logdiff) + last_close_log) 
>>> y_true_price   = btc_data['Close'].iloc[split:] 
>>> rmse       =np.sqrt(mean_squared_error(y_true_price, y_pred_price)) 
>>> mae        =mean_absolute_error(y_true_price, y_pred_price) 
>>> print(f"RMSE (Price): {rmse:,.2f}") 
>>> print(f"MAE  (Price): {mae:,.2f}") 

 

The Python execution yielded a Root Mean Squared Error of 11,823.11 and a Mean Absolute 

Error of 9,891.17. A validation stage was implemented to assess the model's accuracy [40]. These 

findings suggest that the proposed model exhibits a capacity to forecast Bitcoin prices, with a mean 

deviation of 9,891.17 and a root mean square error of 11,823.11, providing a quantitative framework 

for interpreting prediction accuracy within the context of Bitcoin price fluctuations. 

Given the error values of 9,891.17 and 11,823.11, and considering that the weekly Bitcoin price 

on July 15, 2025, ranged from US$ 116,144.02 to US$ 123,237.83, the relative percentage concerning 

the actual price can be calculated accordingly. 

 

𝑀𝑒𝑎𝑛 𝑃𝑟𝑖𝑐𝑒 =  
123,237.83 +  116,144.02

2
 =  $ 119,690.93 

𝑅𝑀𝑆𝐸 =  
11,823.11

119,690.93
 𝑥 100 ≈ 9.87 % 

𝑀𝐴𝐸 =  
9,891.17

119,690.93
 𝑥 100 ≈ 8.26 % 

The observed Mean Absolute Error, registering below 10%, may be cautiously interpreted as 

adequate for forecasting within a medium-term horizon. However, its utility diminishes in 

applications demanding heightened short-term precision, where this magnitude of error may be 

considered relatively significant. In light of Bitcoin's inherent price volatility, these error values may 

be deemed tolerable, particularly when contextualized within broader trend analysis or strategic 

decision-making frameworks. 

Within the context of portfolio rebalancing strategies, a forecast exhibiting an 8–9% error margin 

may still offer valuable directional insights, particularly for establishing entry and exit thresholds or 

fine-tuning crypto-to-cash ratios. Analogously, in scenarios such as monthly investment allocation or 

risk-adjusted position sizing, a 10% error tolerance is frequently deemed acceptable to facilitate high-

level decision-making processes without necessitating intraday precision. Conversely, high-frequency 

trading systems typically demand substantially lower error tolerances.  

Figure 3 presents a compelling visual comparison between the actual and predicted time series 

data, revealing a strong concordance between the two trajectories. This alignment highlights the 

efficacy of the XGBoost model in discerning the complex, non-linear dynamics inherent in 

cryptocurrency markets, particularly when augmented with comprehensive time series features and 

Fourier-based seasonal components [29]. The visualization facilitates a qualitative assessment of the 

model's predictive capabilities and identifies areas for potential refinement. Given the stochastic 

nature and inherent volatility of Bitcoin as a high-risk asset, the observed error margins of 9,891.17 

and 11,823.11 are considered within an acceptable threshold. 
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Fig. 3. Visualization of time series actual data vs. predicted data 

5 Conclusion 

Based on the Bitcoin price forecasting study using XGBoost that integrates time series and 

Fourier-based seasonal features, it can be concluded that the XGBoost model demonstrates significant 

potential in predicting Bitcoin prices, as indicated by an RMSE of 11,823.11 and an MAE of 

9,891.17. These findings indicate the model's ability to generate Bitcoin price predictions with a 

moderate level of accuracy; nevertheless, there remains room for further improvement. The 

implementation of time series features, including rolling features and date parts, as well as Fourier-

based seasonality, proves effective in enhancing the performance of the XGBoost model. These 

features contribute to the model's ability to capture temporal patterns and trends in Bitcoin price data, 

resulting in more accurate predictions. In addition, the volume of data can affect the level of accuracy. 

For further research, it is recommended that the level of error significance be minimized to below 5% 

through the addition of more detailed Fourier terms, or through a hybrid approach with SARIMA or 

LSTM models. 
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