

The Influence of Experience-Centric IT Governance on Digital Ethics Perception in Social Commerce

¹**Naretha Kawadha Pasemah Gumay***, ²**Mira Afrina**, ³**Dwi Rosa Indah**, ⁴**Winda Kurnia Sari**,
⁵**Widya Sartika**

^{1,2,3}Information System, Faculty of Computer Science, Universitas Sriwijaya

⁴Computer Engineering, Faculty of Computer Science, Universitas Sriwijaya

⁵Informatics Management, Department of Informatics Management, Politeknik Negeri Sambas

^{1,2,3,4}Jl. Palembang-Prabumulih, KM32 Inderalaya, Kabupaten Ogan Ilir, Sumatera Selatan

⁵Jl. Sejangkung Desa, Sebayan, Sambas, Kalimantan Barat

*e-mail: narethakawadha@unsri.ac.id,

(received: 17 September 2025, revised: 23 November 2025, accepted: 27 November 2025)

Abstract

Social commerce is a rapidly growing new form of e-commerce that integrates social functions into digital buying and selling activities. However, studies explicitly examining the influence of Experience-Centric IT Governance (ECITG) approach on digital ethics perceptions are limited. This study aims to evaluate ECITG's influence on users perceptions of digital ethics in social commerce. A quantitative approach was used to measure ECITG through five variables: Governance Responsiveness, Transparency and Trust, Experience Personalization, User Participation, and User Empathy. Digital ethics perceptions encompass five variables: Platform Accountability, System Fairness, Data Privacy, Consumer Protection, and Algorithm Transparency. Data were gathered from 100 respondents and processed using partial least squares-structural equation modeling (PLS-SEM) through measurement and structural. The results of the analysis indicate that several ECITG dimensions significantly shape digital ethics perception, particularly governance responsiveness, transparency, and user participation, while personalization and empathy demonstrate weaker influence. Overall, these results confirm that the ECITG approach has a statistically significant impact on digital ethics perceptions in the context of social commerce, though its strength varies across dimensions. The study contributes to the development of experience-based IT governance models and offers practical insights for platform managers to improve ethical transparency and user trust.

Keywords: digital ethics perception, experience-centric IT governance, PLS-SEM, social commerce

1 Introduction

Advances in information technology have driven significant transformation in electronic commerce or e-commerce models, one of which is the emergence of social commerce as a new form of e-commerce that integrates social media features into digital buying and selling activities [1]. This model enables interactions that change the way individuals engage in social interactions, share reviews, and participate in communities, which can enhance the user experience and drive purchasing decisions [2]. With the increasing penetration of social media, social commerce is growing rapidly in various countries, including Indonesia, which has a large number of internet and social media users [3]. A concrete example of this paradigm shift is platforms such as TikTok Shop, Shopee Live, and Tokopedia Play.

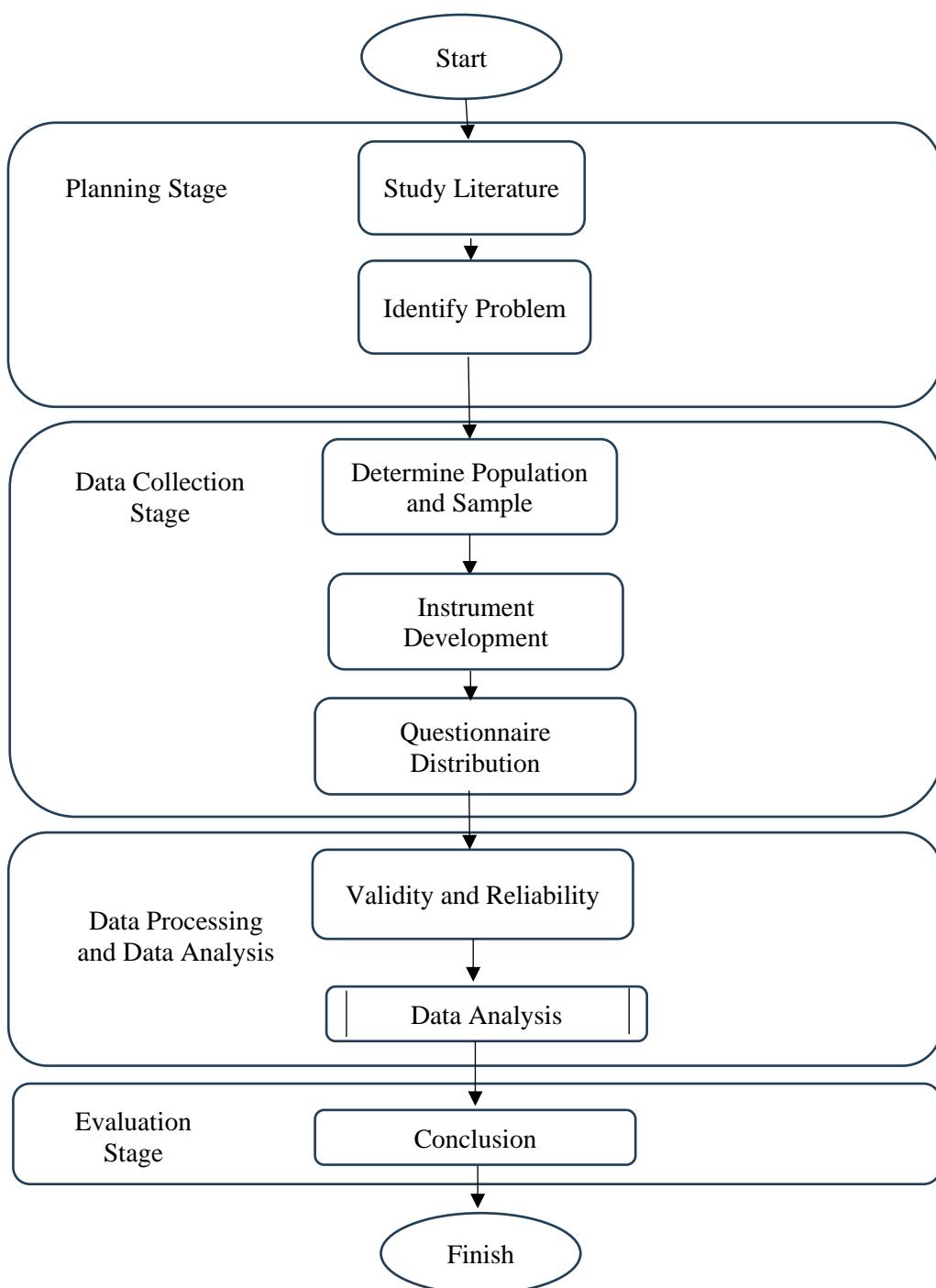
While the growth of social commerce presents significant opportunities, this phenomenon also raises various ethical challenges related to issues such as data privacy, algorithm transparency, system fairness, and platform accountability [4], [5]. In this context, the implementation of IT Governance becomes crucial to ensure that platforms not only function efficiently but also prioritize digital ethics principles. One relevant approach is Experience-Centric IT Governance (ECITG), which places user experience at the center of decision-making and IT governance performance evaluation [6].

The ECITG approach emphasizes dimensions such as governance responsiveness, transparency and trust, experience personalization, user participation, and user empathy. These five dimensions potentially shape users' perceptions of digital ethics toward social commerce platforms,

encompassing aspects such as platform accountability, system fairness, consumer protection, and algorithm transparency [7]. However, empirical studies explicitly examining the relationship between ECITG and digital ethics perception in the context of social commerce remain limited, and this study is expected to fill this research gap.

Although prior studies have examined digital ethics issues such as privacy, fairness, and platform accountability, as well as user experience in digital platforms, limited empirical research integrates these perspectives within a unified IT governance framework. Specifically, few studies have analyzed how Experience-Centric IT Governance (ECITG) influences users' perceptions of digital ethics in social commerce, despite the increasing reliance on personalized content, algorithmic recommendations, and interactive features. This gap indicates the need for a governance-oriented approach that centers on user experience while addressing ethical considerations. Therefore, this study aims to evaluate the influence of ECITG dimensions on digital ethics perception among social commerce users, particularly Shopee Live users. The contribution of this research lies in (1) extending IT governance literature by incorporating experience-centric principles into ethical evaluation frameworks, and (2) providing practical insights for social commerce platform managers to design transparent, responsive, and ethically aligned governance mechanisms.

2 Literature Review


The development of social commerce as a new form of e-commerce has become a major focus in the study of information systems and digital marketing. Previous studies have highlighted the integration of social media features into e-commerce platforms, which creates an interactive environment that strengthens user engagement, facilitates information sharing, and influences purchasing behavior [8], [9]. Various studies indicate that the success of social commerce is not only influenced by technical features and transactional functions but also depends on the quality of the user experience, which is shaped by social interactions and trust in the platform [10]. In this context, digital ethics issues such as data privacy, algorithm transparency, system fairness, and platform accountability are increasingly coming under scrutiny, especially given the nature of social commerce, which relies on recommendation algorithms and large-scale data management [11], [12]. However, these studies rarely address ethical implications related to data usage, algorithmic transparency, or platform accountability.

Information technology governance (IT Governance) has long been acknowledged as a key framework for ensuring the effectiveness, security, and compliance of technology use. The Experience-Centric IT Governance (ECITG) approach places user experience at the center of decision-making and performance measurement in IT governance [13]. The ECITG framework emerges as a bridging concept by emphasizing governance responsiveness, transparency and trust, personalized experience, user participation, and user empathy. Research suggests these factors shape user engagement, trust, and positive perceptions of digital governance [14].

Nevertheless, the testing of potential effect ECITG on digital ethics, particularly in the context of social commerce, remains limited. Previous literature has not connected user experience-driven governance practices with perception of system fairness, accountability, consumer protection, data privacy, and algorithm transparency in social commerce platform [15]. This gap serves as the foundation for this research. Thus, this study not only contributes to the development of IT Governance literature oriented towards user experience but also expands understanding of how experience-based IT governance principles can shape digital ethics perceptions in the platform-based economy era.

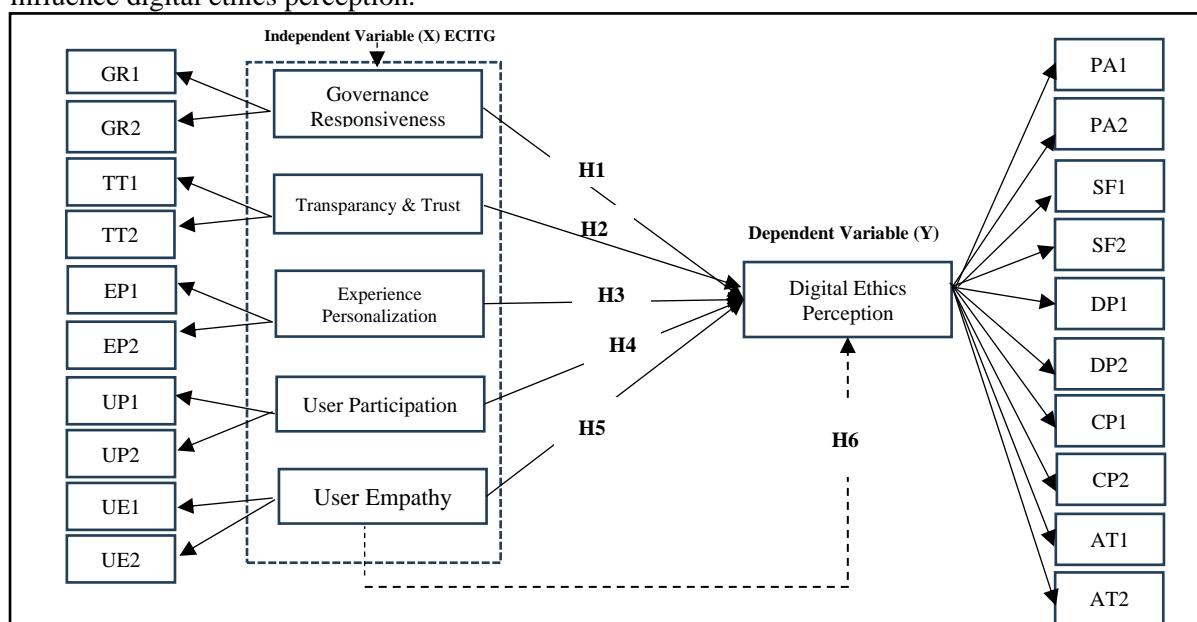
3 Research Method

The purpose of this study is to examine the impact of the Experience-Centric IT Governance (ECITG) approach on digital ethics perception in social commerce platforms. The research approach used is quantitative with a survey method, as it is suitable for testing the relationship between variables empirically based on numerical data that can be analyzed statistically. The research procedure is described in Figure 1.

Figure 1. Research methodology

The research process is divided into several stages, starting with a literature review aimed at examining relevant theories, concepts, and previous research findings. This study serves as the foundation for formulating the conceptual framework and research hypotheses. The second stage, is the problem identification stage, the researcher examines issues that arise in social commerce practices, particularly the growing concerns related to digital ethics involving privacy, platform accountability, and algorithmic transparency. These issues are then compared with previous research findings to identify existing research gaps. The analysis shows that studies exploring the influence of Experience-Centric IT Governance (ECITG) on digital ethics perception are still very limited. Therefore, the research focus is formulated to assess the extent to which ECITG dimensions can

explain users' digital ethics perception in social commerce. At this stage, the conceptual model is also established, serving as the foundation for developing the research hypotheses. The third stage is determining the population and sample. The research population consists of Shopee Live users, while the sample is selected using purposive sampling based on specific criteria deemed relevant, such as frequency of use and experience interacting with the platform's features. To determine a representative sample size from the active Shopee Live user population in Indonesia, Cochran's formula is applied when the total population size is unknown [16], with a margin of error set at 10%, as shown in Equation (1):


$$n = \frac{Z^2 \cdot p \cdot q}{e^2} \quad (1)$$

In Equation (1), n represents the sample size. Z is the Z-score value; in this case, if the confidence level used is 95%, the value is 1.96. p is the proportion of the population with the characteristic being studied; if unknown, it is assumed to be 0.5. q is the complement of p , also 0.5, and e is the margin of error. Based on the formula in Equation (1), the sample size calculation with a 10% margin of error is as follows:

$$n = \frac{(1.96)^2 \times 0.5 \times 0.5}{10\%^2} = \frac{3.8416 \times 0.5 \times 0.5}{0.01} = \frac{0.9604}{0.01} = 96.04$$

Based on the Cochran's calculation above, the value of n is 96.04, which means the minimum required data is from 96 respondents, rounded up to 100 respondents to be used as the sample in this study.

The fourth stage is the development of a questionnaire based on the indicators of the research variables. The fifth stage involves distributing the questionnaire to respondents who meet the criteria via an online survey using Google Forms, disseminated through social media. The sixth stage is validity & reliability tests ensure the accuracy and consistency of research instruments. The collected data was subsequently analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with the assistance of SmartPLS software and the interpretation of results, which includes presenting findings, discussing how the results relate to theory, and analyzing practical implications. The final stage is drawing conclusions and making recommendations based on the analysis results. This model is developed to produce accurate analysis regarding the influence being studied. Figure 2 illustrates the hypothesis model of the ECITG approach, which places user experience at the center of IT governance performance evaluation, emphasizing five main dimensions that are predicted to influence digital ethics perception.

Figure 2. Research conceptual model

Where:

→ : Partial Influence -----→ : Simultaneous Influence

At this stage, based on the conceptual model of the study, the author will conduct hypothesis testing to analyze the influence of the Experience-Centric IT Governance (ECITG) approach on digital ethics perception on social commerce platforms. Based on the conceptual model illustrated in Figure 2 above, the following hypotheses are formulated:

H1: Governance responsiveness has a positive and significant effect on digital ethics perception.

H2: Transparency and trust have a positive and significant effect on digital ethics perception.

H3: Experience personalization has a positive and significant effect on digital ethics perception.

H4: User participation has a positive and significant effect on digital ethics perception.

H5: User empathy has a positive and significant effect on digital ethics perception.

H6: The overall ECITG approach has a positive and significant effect on digital ethics perception.

The following is a table of the ECITG variable dimensions [17], [18] as the independent variable (X), as explained in Table 1, and the digital ethics perception variable [19], [20] as the dependent variable (Y), as explained in Table 2.

Table 1. Independent variable (X): ECITG

Dimension	Description
Governance Responsiveness	The organization's ability to respond to feedback and improve systems quickly and inclusively.
Transparency and Trust	Clarity on how the system operates and user trust in the ethical use of IT.
Experience Personalization	Customization of content, features, and services based on each user's unique preferences.
User Participation	The level of user involvement in decision-making and IT system design.
User Empathy	The organization's ability to understand users' emotional needs and values in the digital experience.

Table 2. Dependent variable (Y): Digital ethics perception

Dimension	Description
Platform Accountability	The perception that the platform is responsible for the ethical implications of its system.
System Fairness	The belief that the system treats users equally and without bias.
Data Privacy	The perception of ethical protection and use of personal data.
Consumer Protection	The perception that users are protected from risks or harm in system usage.
Algorithmic Transparency	The perception of openness in how the system operates and makes automated decisions.

4 Results and Analysis

The results and discussion of this study are presented based on the analysis stages of the ECITG model regarding the influence of ECITG variable on digital ethics perception, which consists of demographic data, measurement model, and structural model.

4.1. Demographic Data

The demographic data of the respondents were collected from their responses.

Gender

The total number of respondents in this study was 100, with 61 respondents identifying as female and 39 respondents identifying as male. The percentage distribution of respondents is shown in Figure 3.

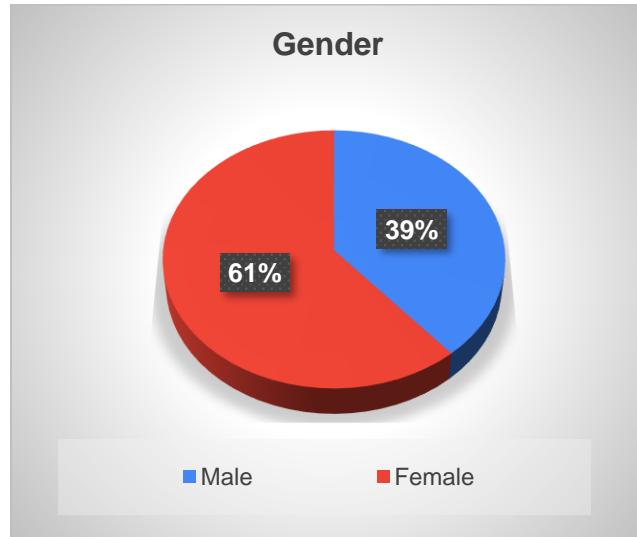


Figure 3. Percentage of respondents by gender

Age

The largest group of respondents is from the age range of under 20 years, with 47 individuals, followed by those in the 31–40 years range, totaling 40 individuals. These two age ranges represent 87% of the sample, while the remaining respondents are from the 21–30 years range (9 individuals), 41–50 years range (4 individuals), and there were no respondents over the age of 50. The percentage distribution of respondent ages is shown in Figure 4.

This bimodal pattern is largely a function of the sampling frame. The survey was administered in a university setting, which naturally over-represents late-teen students (<20) and also attracts a sizable share of working adult learners (31–40) enrolled in professional or continuing programs. As a point of context, the age distribution of social-media users spans roughly 13–64 years, with 13–34 constituting the majority user base (≈79%) [21]. Thus, while our sample strongly captures one segment of this core user base (<20) and a meaningful share of 31–40, it under-captures the 21–30 cohort, which many studies identify as among the most active e-commerce and social-media users. This composition should be kept in mind when interpreting the results.

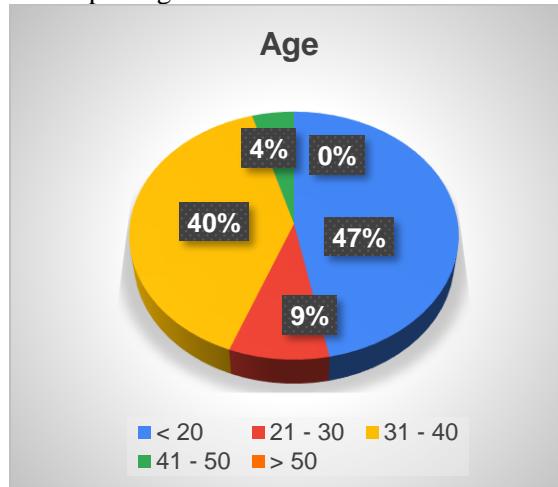


Figure 4. Percentage of respondents by age

Usage Frequency

The frequency of application usage is as follows: 75 respondents use the application 1-2 times per week, 20 respondents use it 3-5 times per week, and 5 respondents use the application daily. The percentage distribution of application usage frequency is shown in Figure 5.

Figure 5. Percentage of frequency of use

Purchases During Live Sales

The majority of respondents have made purchases during live sales, with 73 respondents having done so, while 27 respondents have never made a purchase during a live sale. The percentage of purchases during live sales is shown in Figure 6.

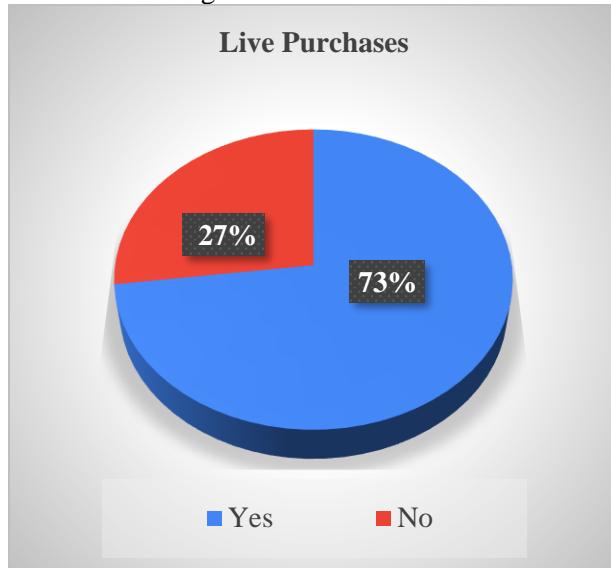


Figure 6. Percentage of live purchases

4.2. Measurement Model

The model testing includes assessments of Individual Item Reliability, Internal Consistency Reliability, Average Variance Extracted (AVE), and Discriminant Validity.

Individual Item Reliability

The individual item reliability test is conducted to assess whether each indicator adequately represents the variable it is intended to measure. The test is based on the standardized loading factor values. A loading factor greater than 0.7 indicates a good or strong correlation, a range between 0.5 and 0.6 is considered acceptable, and a range between 0.4 and 0.5 is considered poor. Indicators with loading factors in the 0.4-0.5 range may be considered for removal if the composite reliability is low

[22]. The loading factor values are shown in Table 3. The results of the Individual Item Reliability test indicate satisfactory results, with all 20 indicators having values above 0.7, and no indicators in the 0.5–0.6 and 0.4–0.5 range as shown in Table 3.

Table 3. Individual item reliability

	Governance Responsiveness	Transparency and Trust	Experience Personalization	User Participation	User Empathy	Digital ethics perception
GR1	0.975					
GR2	0.976					
TT1		0.961				
TT2		0.971				
EP1			0.973			
EP2			0.973			
UP1				0.974		
UP2				0.974		
UE1					0.957	
UE2					0.957	
PA1						0.927
PA2						0.938
SF1						0.888
SF2						0.916
DP1						0.912
DP2						0.912
CP1						0.932
CP2						0.944
AT1						0.878
AT2						0.893

The results of the individual item reliability test as presented in Table 3 above show that all indicators have loading factor values above 0.70, indicating strong individual item reliability. This means each indicator consistently represents its intended construct and contributes meaningfully to the measurement model. High loadings across constructs such as governance responsiveness, transparency and trust, experience personalization, user participation, user empathy, and digital ethics perception confirm that the measurement items are valid.

Internal Consistency Reliability

The internal consistency reliability test aims to measure the consistency among indicators within a single construct or variable. This test is performed by assessing the value of composite reliability and Cronbach's Alpha, both of which should be above 0.7 [22]. The results of the composite reliability test are shown in Table 4.

Tabel 4. Internal consistency reliability

	Cronbach's Alpha	Composite reliability (rho_a)	Composite reliability (rho_c)
Governance Responsiveness	0.949	0.949	0.975
Transparency and Trust	0.928	0.941	0.965
Experience Personalization	0.944	0.944	0.973
User Participation	0.947	0.947	0.974
User Empathy	0.908	0.908	0.956
Digital ethics perception	0.978	0.979	0.981

Tabel 4 above show the result of internal consistency reliability test, each construct exceed minimum threshold of 0,7, that indicate a high degree of internal consistency among the indicators. These consistently high values imply that the indicators for each of these constructs are homogenous, stable, and capable of producing consistent responses across participants. This suggest that the item within each construct reliably measure the same underlying latent variable.

Average Variance Extracted (AVE)

The average variance extracted (AVE) assesses the convergent validity of a model, indicating how much variance is explained by the construct or latent variable. An AVE value of at least 0.5 is considered acceptable, indicating that the construct describes more than 50% of the variance in the indicators it represents [22]. The AVE values for the ECITG and Digital Ethics Perception variables, shown in Table 5, exceed 0.5, confirming their validity for use in the model.

Table 5. Average variance extracted (AVE)

Average Variance Extracted (AVE)	
Governance Responsiveness	0.951
Transparency and Trust	0.932
Experience Personalization	0.947
User Participation	0.950
User Empathy	0.916
Digital ethics perception	0.836

The AVE values presented in the table demonstrate that all constructs achieve strong convergent validity, with all values exceeding the minimum recommended threshold of 0.50. This indicates that each latent variable explains a substantial proportion of the variance in its observed indicators. Governance Responsiveness, Transparency and Trust, Experience Personalization, User Participation, and User Empathy all show exceptionally high AVE values—ranging from 0.916 to 0.951—suggesting that their indicators are highly consistent and strongly reflect their respective constructs. Digital Ethics Perception also records a strong AVE value of 0.836, confirming that its indicators reliably capture the dimensions of ethical evaluation, including platform accountability, fairness, privacy, and transparency. Overall, these results validate that the measurement model demonstrates excellent convergent validity.

Discriminant Validity

Discriminant validity testing is performed by examining the cross-loadings between indicators [23]. This test compares the correlation between an indicator and its own construct with the correlation between the indicator and other constructs. If the correlation between the indicator and its own construct is greater than its correlation with other constructs, it can be concluded that the construct predicts its indicators better than other constructs [22].

Table 6. Discriminant validity

	Governance Responsiveness	Transparency and Trust	Experience Personalization	User Participation	User Empathy	Digital ethics perception
GR1	0.975	0.077	0.173	0.212	0.284	0.516
GR2	0.976	0.151	0.155	0.227	0.291	0.525
TT1	0.092	0.961	0.283	0.234	0.226	0.460
TT2	0.132	0.971	0.331	0.224	0.239	0.529
EP1	0.145	0.311	0.973	0.170	0.322	0.493
EP2	0.182	0.311	0.973	0.190	0.323	0.497
UP1	0.248	0.218	0.185	0.974	0.199	0.529
UP2	0.191	0.243	0.175	0.974	0.160	0.529
UE1	0.273	0.227	0.360	0.138	0.957	0.560
UE2	0.293	0.234	0.274	0.214	0.957	0.560
PA1	0.501	0.435	0.466	0.491	0.532	0.927
PA2	0.492	0.516	0.483	0.485	0.525	0.938
SF1	0.510	0.400	0.365	0.513	0.475	0.888
SF2	0.499	0.439	0.480	0.414	0.585	0.916
DP1	0.490	0.543	0.420	0.559	0.497	0.912
DP2	0.502	0.483	0.466	0.532	0.580	0.912
CP1	0.491	0.493	0.468	0.540	0.552	0.932

CP2	0.476	0.512	0.555	0.486	0.524	0.944
AT1	0.463	0.428	0.483	0.470	0.519	0.878
AT2	0.452	0.439	0.460	0.465	0.557	0.893

The results of the discriminant validity test presented in Tabel 6 show that all 20 indicators have higher loading values on their respective constructs, thus confirming the fulfillment of discriminant validity. For each indicator, the highest loading appears on its corresponding construct—for example, GR1 and GR2 load highest on Governance Responsiveness, TT1 and TT2 on Transparency and Trust, and so on. Meanwhile, loadings on unrelated constructs remain significantly lower. This indicates that each indicator uniquely represents the construct it is intended to measure, and there is no substantial overlap across constructs. Overall, the discriminant validity results confirm that the measurement model is well-specified, with each construct statistically distinct and conceptually coherent.

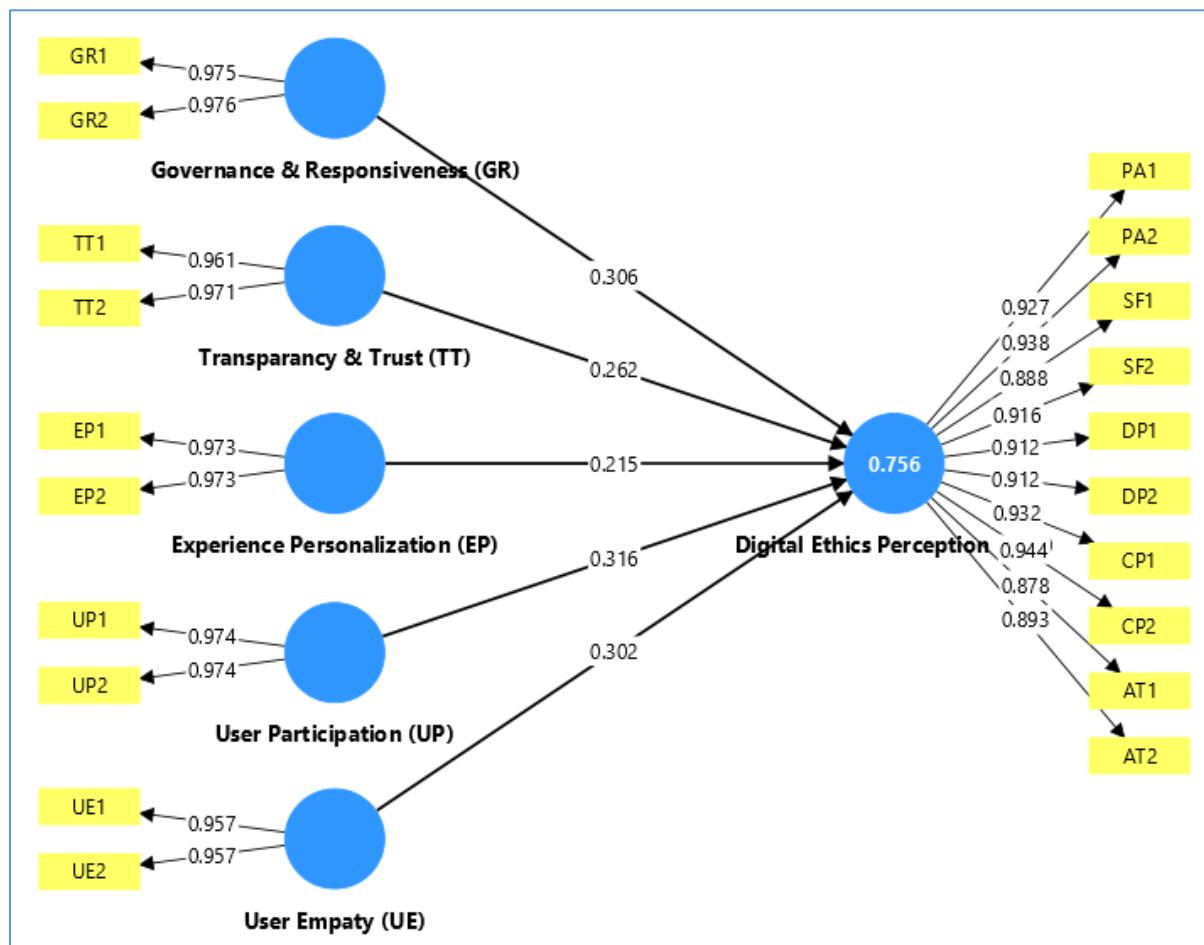


Figure 7. Analysis result by SmartPLS

Figure 7 illustrates ECITG model analysis results generating using SmartPLS, showing the relationships between the five ECITG dimensions and Digital Ethics Perception. The R² value of 0.756 indicates that 75.6% of the variance in digital ethics perception is explained collectively by the independent variables. This reflects strong predictive power for the overall model. Additionally, governance responsiveness, transparency and trust, and user participation demonstrate meaningful positive influences, while experience personalization and user empathy have weaker effects. The model suggests that users' ethical perceptions are shaped more by governance-related factors than by personalization or empathy aspects.

4.3. Structural Model

The testing of the structural model in this study was conducted through path coefficient analysis (β), the coefficient of determination (R^2), and t-test significance testing using the bootstrapping method [21].

Path Coefficient (β)

The path coefficient test was performed by considering the threshold value of 0.1, indicating that the path or relationship has a significant influence [22]. The path from the 5 ECITG variables to Digital Ethics Perception shows a significant effect, with β value above the threshold of 0.1, as shown in Table 7.

Table 7. Path coefficient (β)

Path	Path Coefficient (β)
Governance Responsiveness (GR) → Digital Ethics Perception (DEP)	0.306
Transparency & Trust (TT) → Digital Ethics Perception (DEP)	0.262
Experience Personalization (EP) → Digital Ethics Perception (DEP)	0.215
User Participation (UP) → Digital Ethics Perception (DEP)	0.316
User Empathy (UE) → Digital Ethics Perception (DEP)	0.302

The path coefficient results in Table 7 show varying strengths of influence among the ECITG dimensions on digital ethics perception. User Participation ($\beta = 0.316$) and Governance Responsiveness ($\beta = 0.306$) exhibit the strongest effects, indicating that users perceive ethical behavior more positively when platforms are responsive and allow meaningful user involvement. Transparency and Trust ($\beta = 0.262$) also demonstrates a notable positive influence, reinforcing the importance of openness and clarity in shaping ethical perceptions.

Coefficient of Determination (R^2)

The coefficient of determination (R^2) is utilized to assess the proportion of variance in the target variable illustrated by the other variables in the model. R^2 values are typically interpreted as follows: a value of approximately 0.670 indicates a strong relationship, 0.333 signifies a moderate relationship, and 0.190 or lower suggests a weak relationship [22].

Table 8. Coefficient of determination (R^2)

	R ²	R ² Adjusted
Digital Ethics Perception (DEP)	0.756	0.743

As shown in Table 8, the R^2 value of 0.756 indicates that the ECITG variables collectively explain 75.6% of the variance in digital ethics perception, demonstrating strong predictive power. The adjusted R^2 value of 0.743 further confirms that the model remains robust even after accounting for model complexity.

T-test

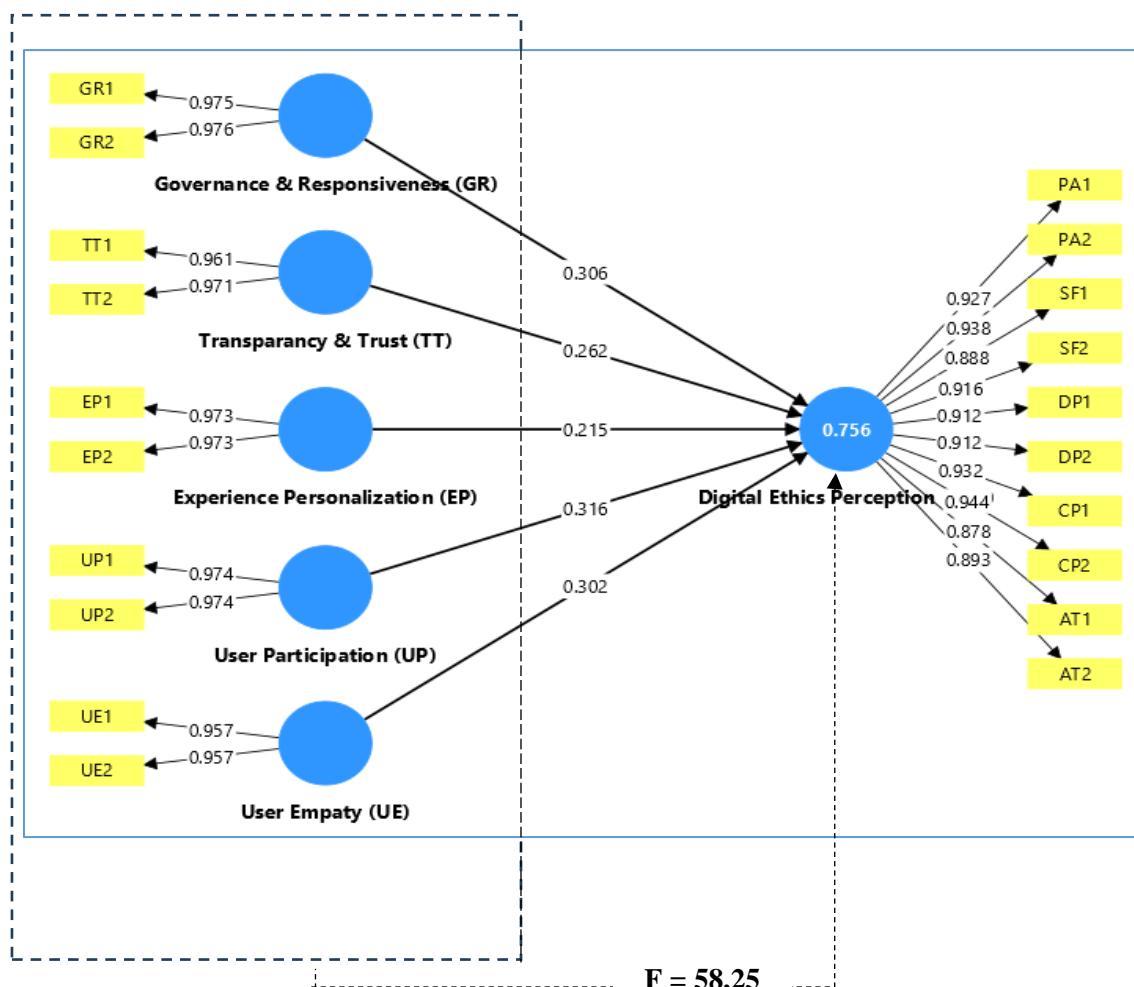

The t-test was performed using the bootstrapping technique with a two-tailed approach at a 5% significance level (0.05). This threshold helps determine whether to accept or reject the hypothesis. A t-test value greater than 1.96 indicates that the hypothesis is accepted [22].

Table 9. T-test

Path	T statistics	P values
Governance Responsiveness (GR) → Digital Ethics Perception (DEP)	2.021	0.043
Transparency and Trust (TT) → Digital Ethics Perception (DEP)	2.100	0.036
Experience Personalization (EP) → Digital Ethics Perception (DEP)	1.711	0.087
User Participation (UP) → Digital Ethics Perception (DEP)	2.193	0.028
User Empathy (UE) → Digital Ethics Perception (DEP)	1.875	0.061

Table 9 presents the results of the t-test for all paths, where the t-statistics for Governance Responsiveness (GR) → Digital Ethics Perception (DEP), Transparency and Trust (TT) → Digital Ethics Perception (DEP), and User Participation (UP) → Digital Ethics Perception (DEP) are all above 1.96 and show statistical significance with p-values less than 0.05. These findings confirming their statistically significant contributions and suggest that users evaluate digital ethics more positively when platforms demonstrate responsiveness, provide clear and transparent information, and allow meaningful user engagement.

However, the path from Experience Personalization (EP) → Digital Ethics Perception (DEP) has a t-statistic of 1.711 and a p-value of 0.087 and User Empathy (UE) → Digital Ethics Perception (DEP) has a t-statistic of 1.875 and a p-value of 0.061, indicating that it is not statistically significant. Although their path coefficients are positive, the evidence is insufficient to conclude a meaningful effect at the 5% significance level. This implies that personalization and empathy-related features may be less influential in shaping ethical perceptions compared to governance-oriented factors.

Figure 8. Path coefficients model

The F-test is a statistical method used to evaluate the overall effect of a model. The primary purpose of the F-test is to determine whether the exogenous variables collectively have a significant influence on the endogenous variable. Hypothesis testing is carried out by comparing the computed *F*-statistic with the *F*-table value [24]. If the computed *F*-statistic is greater than the *F*-table value, the effect is considered significant. The *R*² value of 75.6% indicates that the model explains 75.6% of the variation in the dependent variable, based on five exogenous variables and a sample size of 100. The calculated *F*-statistic is presented as shown in the equation (2) below [16].

$$F_{statistic} = \frac{R^2/k}{(1-R^2)/(n-k-1)}$$

(2)

Notes:

R^2 is the R-square value (coefficient of determination).

n is the number of respondents.

k is the number of predictors in the model (5 predictors for ECITG).

By substituting these values into the formula, we obtain:

$$F_{statistic} = \frac{0.756/5}{(1 - 0.756)/(100 - 5 - 1)} = \frac{0.1512}{0.244/94} = \frac{0.1512}{0.0025957447} = 58.25$$

The calculation results show an F -statistic of 58.25 at a 5% significance level, with $df_1 = 5$ and $df_2 = 100$, and an F -table value of 2.311. Since the F -statistic is greater than the F -table value, the hypothesis is accepted. This indicates that the ECITG variables governance responsiveness, transparency and trust, experience personalization, user participation, and user empathy collectively have a significant influence on digital ethics perception.

Based on the path coefficients model diagram shown in Figure 8, the results of hypothesis testing are presented in Table 10.

Table 10. Results of the structural model analysis

No	Hypothesis		β	T-test	Analysis	
	Path				β	T-test
H1	Governance Responsiveness (GR) → Digital Ethics Perception (DEP)		0.352	2.021	Sign	Accepted
H2	Transparency & Trust (TT) → Digital Ethics Perception (DEP)		0.436	2.100	Sign	Accepted
H3	Experience Personalization (EP) → Digital Ethics Perception (DEP)		0.443	1.711	Sign	Not Accepted
H4	User Participation (UP) → Digital Ethics Perception (DEP)		0.396	2.193	Sign	Accepted
H5	User Empathy (UE) → Digital Ethics Perception (DEP)		0.435	1.875	Sign	Not Accepted

No	Hypothesis		F-Statistic	F-Table	Analysis
	Path				
H6	ECITG → Digital Ethics Perception (DEP)		58.25	2.311	Significant

The results of the structural model analysis presented in Table 10 indicate varying levels of influence among the five ECITG dimensions on digital ethics perception (DEP). The governance responsiveness (H1) path demonstrates a positive and statistically significant effect on DEP ($\beta = 0.352$, $t = 2.021$), indicating that greater responsiveness in governance mechanisms enhances users' ethical perceptions. Similarly, transparency and trust (H2) exert a positive and significant influence on DEP ($\beta = 0.436$, $t = 2.100$), highlighting the importance of openness and credibility in fostering ethical user perceptions.

In contrast, experience personalization (H3) does not show a statistically significant effect on DEP ($\beta = 0.443$, $t = 1.711$), suggesting that tailoring platform experiences to individual preferences is not a determining factor in shaping users' ethical evaluations. However, user participation (H4) is found to significantly and positively influence DEP ($\beta = 0.396$, $t = 2.193$), indicating that active involvement of users in platform processes strengthens their perception of ethical standards. User empathy (H5) does not yield a significant effect ($\beta = 0.435$, $t = 1.875$), implying that empathetic considerations from the user side do not substantially contribute to perceptions of digital ethics.

The overall F-test result for H6 confirms that all five ECITG dimensions, when considered collectively, have a statistically significant effect on DEP (F -statistic = 58.25 > F -table = 2.311). This finding suggests that although not all individual dimensions are significant, the ECITG framework as

a whole is effective in explaining variations in users' perceptions of digital ethics within social commerce platforms.

5 Conclusion

This study investigates the influence of the Experience-Centric IT Governance (ECITG) approach on digital ethics perception platforms among Shopee Live users. Using both simultaneous and partial analyses, the research examines five ECITG dimensions: governance responsiveness, transparency and trust, experience personalization, user participation, and user empathy. The findings reveal that, collectively, these dimensions exert a strong and statistically significant influence on users' perceptions of digital ethics. However, partial analysis shows that only governance responsiveness, transparency and trust, and user participation have a significant positive effect, while experience personalization and user empathy are not statistically significant predictors. These results highlight that certain ECITG dimensions play a more dominant role in shaping perceptions of platform accountability, system fairness, data privacy, consumer protection, and algorithmic transparency. The study contributes to the theoretical development of user experience-based IT governance and offers practical guidance for social commerce platform managers to prioritize responsive governance, transparency, and user engagement in enhancing digital ethics perception. The sample in this study shows a bimodal age pattern: respondents <20 years (47%) and 31–40 years (40%) dominate, while 21–30 years are under-represented (9%) and >50 years are absent. Since the 21–30 group is known as a very active segment of e-commerce/social media users, this composition may limit the generalizability of the findings, especially because data collection was mostly in a campus environment. For future studies, it is recommended to use quota/stratified sampling to balance the age proportions (<20, 21–30, 31–40, 41–50, >50), apply post-survey weighting and age-based multi-group tests, and broaden recruitment beyond campus (community or online panels). In addition, the sample size $N = 100$ only meets the minimum threshold for PLS-SEM with five predictors and produces a margin of error around $\pm 10\%$ at 95% confidence. As a result, statistical power is limited, path estimates are less stable, and sub-group analyses (e.g., by age) are not optimal. Future research should target a larger sample, conduct power analysis at the design stage, and report robustness checks.

Reference

- [1] T. P. Liang and E. Turban, “*Introduction to the Special Issue Social Commerce: A Research Framework for Social Commerce*,” Jan. 01, 2011. DOI: 10.2753/JEC1086-4415160201.
- [2] N. Hajli, “*Social Commerce Constructs and Consumer's Intention to Buy*,” *Int J Inf Manage*, Vol. 35, No. 2, pp. 183–191, 2015, DOI: 10.1016/j.ijinfomgt.2014.12.005.
- [3] DataReportal and W. A. Social, “*Digital 2025: Global Overview Report*,” 2025.
- [4] B. Lu, W. Fan, and M. J. Zhou, “*Social Presence, Trust, and Social Commerce Purchase Intention: An Empirical Research*,” *Comput Human Behav*, Vol. 56, pp. 225–237, 2016.
- [5] K. D. Martin and P. E. Murphy, “*The Role of Data Privacy in Marketing*,” *J Acad Mark Sci*, Vol. 45, No. 2, pp. 135–155, 2017.
- [6] D. Suryaningtyas, H. J. Astuti, and A. N. Hidayanto, “*Experience-Centric IT Governance: An Integrative Framework*,” *Journal of Information Systems*, Vol. 36, No. 3, pp. 45–61, 2022.
- [7] L. T.-N. Huy, F. Rowe, D. Truex, and M. Q. Huynh, “*Governance of Digital Platforms: The Role of Trust, Transparency, and Fairness*,” *Information Systems Journal*, Vol. 31, No. 5, pp. 697–730, 2021.
- [8] L. Xq, R. Dashuai, and J. Zhen, “*Influence of Social Interaction on the Purchase Behavior of Social Commerce Consumers*,” *Human Systems Management*, Vol. 40, No. 6, pp. 917–935, 2021, DOI: 10.3233/HSM-190801.
- [9] X. Li and Y. Wang, “*Social commerce: The Roles of Social Support and Social Presence in Building Trust and Purchase Intention*,” *Electron Commer Res Appl*, Vol. 54, p. 101174, 2022, DOI: 10.1016/j.elerap.2022.101174.
- [10] N. Hajli, J. Sims, A. H. Zadeh, and M. O. Richard, “*A Social Commerce Investigation of the Role of Trust in a Social Networking Site on Purchase Intentions*,” *J Bus Res*, Vol. 71, pp. 133–141, Feb. 2017, DOI: 10.1016/j.jbusres.2016.10.004.

- [11] Y. Kim, S. Park, and J. Oh, “*Ethical Challenges in Algorithmic Decision-Making for E-Commerce: Privacy, fairness, and transparency*,” *Electronic Markets*, Vol. 31, No. 3, pp. 607–620, 2021, DOI: 10.1007/s12525-020-00433-6.
- [12] J. Chen and Z. Lin, “*Algorithmic Transparency and User Trust in Social Commerce: The Moderating Role of Privacy Concerns*,” *Journal of Electronic Commerce Research*, vol. 23, no. 2, pp. 145–162, 2022.
- [13] B. Tan, H. Liu, and J. Zhang, “*From IT Governance to Experience Governance: A New Paradigm for Digital Platforms*,” *MIS Quarterly Executive*, Vol. 21, No. 3, pp. 203–220, 2022.
- [14] H. Liu, B. Tan, and J. Zhang, “*Experience-Centric IT Governance in Platform Ecosystems: Impacts on User Engagement and Trust*,” *Information & Management*, Vol. 60, No. 5, p. 103725, 2023, Doi: 10.1016/j.im.2023.103725.
- [15] S. Park and J. Oh, “*Consumer Protection in Digital Platforms: REGULATORY Approaches and Ethical Considerations*,” *Telecomm Policy*, vol. 45, no. 6, p. 102157, 2021, doi: 10.1016/j.telpol.2021.102157.
- [16] Sugiyono, *Metode Penelitian Kuantitatif Kualitatif dan R&D*. Bandung, Indonesia: CV Alfabeta, 2019.
- [17] L. Zavolokina, M. Schlegel, and G. Schwabe, “*Towards Experience-Centric IT Governance: A Design Science Research Approach*,” in *Proceedings of the International Conference on Information Systems (ICIS)*, 2020.
- [18] A. Hein *et al.*, “*Digital Platform Ecosystems*,” *Electronic Markets*, Vol. 30, No. 1, pp. 87–98, Mar. 2020, DOI: 10.1007/s12525-019-00377-4.
- [19] L. Floridi, *The Ethics of Information*. Oxford, UK: Oxford University Press, 2013.
- [20] K. Martin, “*Ethical Implications and Accountability of Algorithms*,” *Journal of Business Ethics*, Vol. 160, No. 4, pp. 835–850, Dec. 2019, DOI: 10.1007/s10551-018-3921-3.
- [21] S. Kemp, “*Digital 2020: Indonesia*,” 2020.
- [22] J. F. Hair, C. M. Ringle, and M. Sarstedt, “*PLS-SEM: Indeed a Silver Bullet*,” *Journal of Marketing Theory and Practice*, Vol. 19, No. 2, pp. 139–152, 2011.
- [23] A. Subiyakto, A. R. Ahlan, S. J. Putra, and M. Kartiwi, “*Validation of Information System Project Success Model: A Focus Group Study*,” *Sage Open*, Vol. 5, No. 2, pp. 1–14, 2015.
- [24] Asniar, D. K. Prananingrum, and Z. Putra, “*Pengaruh Kualitas Pelayanan terhadap Kepuasan Konsumen Bongkar Muat pada PT Pelabuhan Indonesia IV (Persero) Cabang Kendari*,” *Jurnal Pendidikan Tambusai*, vol. 7, no. 2, pp. 3665–3675, 2023, doi: 10.31004/jptam.v7i2.6259.