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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a highly progressive neurodegenerative disease that impairs
motor and speech function. Conventional diagnostic methods, both invasive and non-invasive, are
often time-consuming and produce limited sensitivity. This leads to delays in treatment and worsening
disease progression. This study proposes a multimodal deep learning framework that utilizes and
integrates invasive medical records with non-invasive morphological features of patient speech audio
extracted into Mel-Spectrograms. Unlike previous studies that focused solely on speech or clinical
features, this study introduces an integrated multimodal diagnostic framework that effectively
combines both data sources to achieve reliable diagnostic accuracy. The study included two
experimental scenarios. In the first scenario, the audio-trained model used a Convolutional Neural
Network (CNN) and was systematically optimized by testing variations in network depth, feature
fusion techniques, and layer dropout probabilities to improve model generalization and stability. From
the experimental results of the first scenario, the CNN achieved the best performance, achieving
80.33% accuracy in classification using audio data alone from all the tested model variations. In the
second experimental scenario, when the best model was trained by incorporating clinical data, the
model demonstrated improved diagnostic performance, achieving 100% accuracy. This finding
highlights the importance of combining data modalities or sources from various domains, both
invasive and non-invasive, to achieve optimal model performance for early ALS detection.

Keywords: amyotrophic lateral sclerosis, audio morphology, clinical records, convolutional neural
network, multimodal

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that primarily
affects motor neurons in the brain and spinal cord. This condition ultimately leads to muscle weakness
and paralysis [1], [2]. As the disease progresses, individuals with ALS experience a gradual decline in
voluntary muscle function. This is characterized by impairments in speech, mobility, swallowing, and
even breathing [3]. Given its fatal nature and the lack of a definitive cure, early diagnosis is crucial to
allow for therapeutic interventions that can slow disease progression and improve quality of life [[4],
[5], [6]. Despite its great urgency, ALS diagnosis still relies heavily on conventional clinical
assessment and electromyography (EMG). Both are invasive, expensive, and require specialized
expertise [7]. Furthermore, these diagnostic methods are often time-consuming and inaccessible in
many clinical settings. This results in delays in diagnosis and subsequent treatment initiation [8]. Such
delays are detrimental, as interventions tend to be less effective once the disease has reached an
advanced stage.

Another additional challenge in diagnosing ALS is its complex and multifactorial nature. It not
only affects motor function but also impairs a person's ability to speak due to damage to the motor
neurons that control vocal articulation. As a result, ALS sufferers often experience tremors when
speaking [9]. In this context, speech analysis has recently emerged as a promising non-invasive
biomarker for the early detection of ALS. This analysis offers the potential for early screening
through detectable acoustic and prosodic changes in the patient's voice [10], [11], [12]. However,
most previous studies on ALS detection systems suffer from critical limitations. These studies have

http.//sistemasi.ftik.unisi.ac.id

220


mailto:nyoman.switrayana@universitasbumigora.ac.id

Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 15, Nomor 1, 2026: 220-236 e-ISSN:2540-9719

used only one type of data, either invasive or non-invasive data [13-29]. This limited approach ignores
the multidimensional nature of ALS symptom data. Multidimensionality means that ALS has diverse
clinical and physiological symptoms, where all of these data can provide complementary insights
when analyzed within an integrated framework. The lack of an approach to combining these multi-
modal data in current diagnostic systems represents a missed opportunity to leverage all ALS-related
indicators to produce a more accurate and reliable early identification or detection system.

To address these issues, this study proposes a novel diagnostic system approach. The proposed
diagnostic system integrates both invasive and non-invasive data modalities. Specifically, this study
combines clinical information, such as genetic markers and other neurological assessments, with
voice-based audiomorphological features represented through Mel-Spectrograms. This representation
is then processed using a convolutional neural network (CNN) model. The CNN model processes the
data and recognizes patterns within the two datasets. To produce a high-performance model, the
model is trained and validated using K-Fold Cross-Validation. It is then optimized using the Adam
Optimizer and Early Stopping to ensure optimal generalization and prevent overfitting. Through this
integrated and structured framework, this study aims to develop an ALS diagnostic system by
improving classification performance and enhancing system robustness. This research contributes to
the field of deep learning and medical diagnostics for ALS. This research approach not only
strengthens diagnostic capacity by leveraging diverse data sources but also encourages the
development of non-invasive, efficient, and scalable diagnostic tools. It is hoped that it can be
developed and applied to a wider clinical sector.

2 Literature Review

Recently, ALS detection models have been extensively explored through various modalities or
data types and machine learning techniques. For example, Antunes et al. [13] proposed the use of
surface electromyography (SEMG) features processed using the AdaBoost model. Their research
showed promising results in early ALS identification. In Rong et al. [14], they investigated how
SEMG and acoustic sound features were combined. The results showed that multimodal data
integration significantly improved the model's performance in ALS detection. Similarly, in Cebola et
al. [15], audio signals underwent feature extraction by segmenting through windowing and testing
several machine learning models. Their research showed that the Support Vector Machine (SVM)
model outperformed other models.

The use of other types of data from ALS symptoms is used, such as the identification approach
by models with input data from MRI. MRI itself is a feature for ALS detection extracted from brain
imaging data. In the studies of Tafuri et al. [16], Jamrozy et al. [17], and Kocar et al. [18], they used
MRI data and showed that the SVM model was the most effective in ALS detection. Furthermore,
research conducted by Tena et al. [19], they tried to utilize time-frequency features and phonatory
sounds trained on a random forest model. Research by Kurmi et al. [20] even introduced wavelet time
scattering transforms on acoustic features and compared the performance of several deep learning
architectures. The deep learning models used included Deep Neural Networks (DNN), Long Short-
Term Memory (LSTM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN). Their findings revealed that DNN and CNN provided superior performance.

Another study in acoustic-based ALS detection is the work of Simmatis et al. [21]. Here they
explored various acoustic features to distinguish between ALS patients and those without. Then, the
study by Bhattacharjee et al. [22], they compared pitch and Mel-Frequency Cepstral Coefficients
(MFCC). The results confirmed that the pitch feature has robustness in noisy environments. The study
by Wang et al. [23] introduced an architecture named Longitudinal Speech Transformer for temporal
analysis of speech in ALS patients. Meanwhile, the study by An KH et al. [24] who extracted
statistical features from intelligible speech and trained it on CNN mode was successful for ALS
detection at an early stage. Recent studies have also shown how to integrate advanced pre-trained
models and equipped with hybrid feature extraction strategies. The study by Jayakumar et al. [25]
used the HUBERT model for hypernasality detection and ALS patient detection using a Dense Neural
Network deep learning model. Another study by llias et al. [26], they used voice features extracted by
MFCC and used a hypernetwork variant model based on AlexNet. Research by [27] used neural
networks to predict ALS progression by utilizing ALS Functional Rating Scale (ALSFRS) data. Also
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research conducted by Faghri et al. [28], they used clinical data to personalize ALS subtypes. In a
different type of modality, Ngo TD et al. [29] proposed the use of Electroencephalogram (EEG)
signals and eye movement recordings to assess ALS-related motor dysfunction. These features are
relatively new and different from other features. However, they are still obtained from observable
symptoms experienced by ALS patients. So from there we can see that there are many types of data
that can be obtained from people with ALS.

Of all the studies discussed above, there are still significant limitations in each study. This
limitation is that most approaches focus on a single data modality, whether it is data obtained
invasively (e.g., clinical, MRI, EEG) or non-invasive (e.g., voice, SEMG). These studies have not
considered integrating both types of data into an integrated diagnostic system. Also considering that
the complexity of ALS symptoms comes from the entire motor, respiratory, and vocal systems [30-
31]. By integrating various data sources, it is hoped that it can provide a more comprehensive and
accurate diagnostic representation. Because the learning model will have many features or variables
that need to be learned and considered just to detect whether someone has ALS or not. Assessments in
the form of clinical data [32], MRI imaging [33], muscle ultrasound [34], and voice signals each
capture unique aspects of ALS symptoms. Although the potential of each modality has been proven,
previous studies still lack multimodal integration, thus strengthening the gap in previous studies. The
hypothesis of this study is that a diagnostic system that processes clinical and speech data
simultaneously can offer more holistic and reliable predictive capabilities. Therefore, to address the
existing gaps in previous research, this study proposes a multimodal ALS detection framework, which
combines clinical data (invasive) and Mel-Spectrogram representations of speech signals (hon-
invasive), into a CNN-based model. In addition to proposing the integration of these data, this study
will also introduce several technical contributions that can be observed from the workflow. These
contributions include, first, deep feature extraction from Mel-Spectrogram using various CNN
configurations (number of layers, fixed kernel size, max/average pooling). Second, the use of varying
dropout probabilities for regularization. And third, is implementing performance optimization through
K-Fold Cross-Validation, Adam Optimizer, and Early Stopping. Thus, this study proposes an ALS
diagnostic system with a novel approach. This not only addresses the practical need for a scalable and
non-invasive ALS screening tool but also opens new directions for future research in multimodal
health informatics and intelligent neurodiagnostics.

3 Research Method

The research methodology, or stages, of this study were designed to ensure a systematic and
organized workflow. A flowchart of the research stages is presented in Figure 1. Figure 1 shows the
sequential steps to be undertaken in this study. This research begins with data collection, followed by
data preprocessing, and then feature extraction. The data preprocessing stage aims to clean and
prepare the data. The feature extraction stage aims to capture relevant characteristics of the data used
before modeling. The next stage is the modeling and model evaluation stage.

Evaluation

Figure 1 Research Flowchart
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A. In the Data Collection stage, this stage includes obtaining medical record datasets and voice
recordings for ALS diagnosis as explained in the research [35]. There are several parameters or
clinical features that can be obtained to distinguish between healthy individuals and those suffering
from ALS. These features include genetic markers (C9orf72, SOD1, FUS, TARDBP) [36], [37],
[38], pulmonary function (FVC%), difficulty swallowing score, Revised ALS Functional
Assessment Scale (ALSFRS-R), King's Clinical Stage, Medical Research Council (MRC) Score,
namely muscle strength score, and Penn Upper Motor Neuron Score (PUMNS). Then for voice
data collected from ALS patients and healthy controls. Data collected were obtained from 153
subjects, with 102 of them being ALS patients and 51 healthy controls.

B. Data preprocessing is the stage for preparing tabular (clinical) data and voice data before feature
extraction to ensure the quality and consistency of each data. For tabular data, preprocessing
involves handling missing values and maintaining the consistency of clinical data using Min-Max
scaling. The value scaling technique on data using Min-Max is defined in Equation 1 [39]. For
audio data, the data is converted to WAV format (16-bit, mono) to be compatible with the
subsequent processing flow. Then, silence removal will be performed to remove silent or noisy
segments in the voice signal. Resampling of the voice signal is also performed to standardize the
sample rate across recordings at 22.05 kHz.

Xscalea = X:iu)_(—?:lm 1)
Where,
Xmin : the minimum value in the dataset
Xmax : the maximum value in the dataset
X : the data value to be scaled
Xscaled : the data value after scaling

C. The feature extraction stage is a process carried out to obtain important information/characteristics
from voice data. This stage aims to represent the voice signal in a more concise and meaningful
form without losing its essential characteristics. The method used in this study is MFCC [40], [41],
[42], with the procedure illustrated in Figure 2.

(- (—

i Pre- - [ Fast Fourier Mel Discrete Cosine MECC
Signal (TUREEE Framing Window Transform | Filter | Log ()| Transform Cocfficients
o F o (FFT) Bank (DCT)

Figure 2 MFCC processing steps
MFCC processing begins with pre-emphasis to apply a high-pass filter to the speech signal. This
process aims to amplify the signal and enhance its high-frequency components. Next, the signal is
segmented into short frames, with or without overlap. This process is called framing. After the
framing process, the next process is windowing. The Hamming window used in this study
functions to reduce spectral distortion and optimally capture signal features. The application of the
Hamming window is explained in Equation (2).
2mn )

W(n,a) = (1 —a) — acos (N 1
where0<n <N -1
W (n) represents the Hamming window and S(n) enotes the signal frame fromn=0ton=N -1.
Fast Fourier Transform (FFT) is applied to convert the signal from the time domain to the
frequency domain, as defined in Equation (3). Here, S;(n) represents the time-domain signal,
z;(k) denotes the frequency-domain signal, h(n)is the window of length N samples, and k
corresponds to the FFT length.
—2T

zi(k) = Xh=1 Si(mh(n)e ™ ©)
After the FFT process, the next process is the application of the Mel Filterbank which is useful for
adjusting the frequency representation to suit human hearing sensitivity. The method is by
converting the linear frequency f (Hz) to the Mel scale f,,.;) according to Equation (4). Each

(2)
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fmer) is then mapped to its corresponding filter in the filterbank. Then, the Logarithm process is
applied to the filterbank output which is calculated to approximate human perception of sound
intensity. Finally, the Discrete Cosine Transform (DCT) is applied to convert the signal back from
the frequency domain to the time domain. This process produces the MFCC coefficients as a
feature vector, as defined in Equation (5). Here, C,, represents the DCT results form =1, 2, ..., 12.
N is the number of filterbanks, and E,, represents the logarithmic output. The output of the MFCC
process will be used as a feature, which can be visually represented in the form of a Mel
Spectrogram.

fmet = 2595 logao (1 + ) (4)
Cn = Zh_y cos (m(k — 0.5)%) By (5)

D. In the Modeling stage, CNN is designed and built to process Mel-Spectrogram. CNN is used
because of its ability to capture spatial patterns and complex features, especially in the form of
images [43]. The CNN architecture will include a convolutional layer with ReLU activation
followed by a pooling layer that functions for feature dimensionality reduction. There is an
optional dropout layer for regularization. And at the end of the CNN there will be a Fully
Connected Layer (FCL) used to process Mel-Spectrogram features with combined clinical data. In
the multimodal data fusion process, audio features extracted from Mel-Spectrogram are combined
with clinical data using a concatenate layer. Where each modality first needs to be processed in its
respective neural network branch before being combined for multimodal classification. The output
layer of this architecture uses Sigmoid activation which is suitable for binary classification with
Binary Cross-Entropy Loss as its loss function. To develop a model with multimodal data input,
initial investigations of CNN architecture were carried out first by varying the number of
convolutional layers, pooling strategy, and dropout configuration. This systematic exploration is
summarized in Table 1. These architectural variations were designed to identify the most effective
architectural setup for capturing relevant patterns in Mel-Spectrogram data before integration with
clinical features.

Table 1 CNN architecture scenarios for melspectogram modeling
Research Scenario

Scenario Code #Conv Layers Filters & Kernel Size Pooling Type
S1A 1 Conv(16, 3x3) MaxPooling(2x2)
s1 S1B 1 Conv(16, 3x3) AveragePooling(2x2)
$2 S2A 2 Conv(16, 3x3) — Conv(32, 3x3) MaxPooling(2x2)
S2B 2 Conv(16, 3x3) — Conv(32, 3x3) AveragePooling(2x2)
S3A 3 Conv(16, 3x3) — Conv(32, 3x3) MaxPooling(2x2)
$3 — Conv(64, 3x3) _
S3B 3 Conv(16, 3x3) — Conv(32, 3x3) AveragePooling(2x2)
— Conv(64, 3x3)
Conv(16, 3x3) — Conv(32, 3x3) MaxPooling(2x2)
S4A 4 — Conv(64, 3x3) — Conv(128,
sa 3x3)
Conv(16, 3x3) — Conv(32, 3x3) AveragePooling(2x2)
S4B 4 — Conv(64, 3x3) — Conv(128,
3x3)
Conv(16, 3x3) — Conv(32, 3x3) MaxPooling(2x2)
S5A 5 — Conv(64, 3x3) — Conv(128,
S5 3x3) — Conv(256, 3x3)

Conv(16, 3x3) — Conv(32, 3x3) AveragePooling(2x2)
S5B 5 — Conv(64, 3x3) — Conv(128,
3x3) — Conv(256, 3x3)
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The model was trained using K-Fold Cross Validation to optimize performance and minimize bias
[44], as illustrated in Figure 3. For example, if K = 4, the dataset is divided into four folds. This
means the model is trained on three folds and tested on the remaining folds. This process is
repeated four times, with each fold serving once as the test dataset. The final evaluation results are
obtained by averaging the performance across the four iterations. This results in a more stable
evaluation of the model and reduces bias in the model performance assessment. In this study, the
evaluation of the training and testing split/model ratios was performed using a 5-fold cross-
validation scheme.

K=4
| Training Data | |Va|idation Datal

Split1| Fold1 | | Fold2 | | Folaa | | Fola4 |E>Performance1

spiit2| Fold1 | | Fold2 | | Folaa | | Fold4 |C>Performan092

spiit3| Fold1 | | Fold2 | | Folda | | Fold4 |:>Peﬁormance3 3T

spiit4| Fold1 | | Fold2 | | Folaa | | Fold4 |:(>Performance4
" Average  Final
Performance Performance

Figure 3 Schematic representation of k-fold cross validation
Next, optimization during the training process is performed using the Adam optimizer. Early
stopping is also applied to prevent overfitting. The Adam optimizer works adaptively by adjusting
the learning rate of each parameter, as illustrated in Figure 4. With this optimization, the model is
able to avoid local minima and approach global minima. This approach can speed up and stabilize
the training process [45].

Global Minimum

( Best One)

Local
Minimum

YA

Figure 4 Schematic representation of the adam optimizer
Early Stopping works by stopping model training when performance on validation data begins to
decline. This phenomenon is illustrated in Figure 5. This technique prevents overfitting and
ensures the model remains able to generalize to previously unseen data [46]. All procedures in this
study were implemented using Python with the TensorFlow framework.
Loss
L\ Underfitting Overfitting Validation

\ i Training

Time (epochs)

Figure 5 Schematic representation of the early stopping mechanism
E. Evaluation is the stage where the trained model is then tested with test data to assess its
performance. Evaluation in this study was conducted using four main metrics, namely Precision,
Recall, F1 Score, and Accuracy. The calculation of each evaluation metric is defined in Equation
(6-9) [47]. Here, TP is the number of correct predictions for the positive class. TN is the number
of correct predictions for the negative class. Then FP is the number of incorrect predictions for the
positive class. And finally FN is the number of incorrect predictions for the negative class.
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Recall = ———
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2 x Precision x Recall (8)
F1 — Score = —
Precision + Recall
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TP+FP+TN+FN

4 Results and Analysis

A. Data Collection

The clinical dataset used in this study consists of 35 features that comprehensively capture the
demographic, genetic, functional, and neurological aspects of ALS patients and healthy controls. The
main features in the dataset include diagnostic metrics and disease duration (DiagnosticDelay,
DiseaseDuration), pulmonary function (FVC%), and functional ability assessed using the ALS
Functional Rating Scale Revised (ALSFRS-R). Because the ALSFRS-R contains several attribute
columns, these features will be further broken down into subscores to measure the ability to speak,
salivate, swallow, handwriting, cut food, dress and personal hygiene, turning over in bed, walking,
climbing stairs, dyspnea, orthopnea, and respiratory insufficiency. The dataset also includes a feature
in the form of motor function evaluated using the Medical Research Council (MRC) score for head,
upper limb, and lower limb muscles. Along with the Penn Upper Motor Neuron Score (PUMNS) for
bulbar, upper limb, and lower limb involvement. There is a disease stage feature recorded through the
King Clinical Stage and the severity of dysarthria is assessed using the Cantagallo Questionnaire.
Additionally, genetic information for key genes in patients with ALS (SOD1, TARDBP, C9orf72,
FUS) was collected. Region of disease onset and treatment status were also documented. The Revised
El Escorial Criteria were included to categorize disease probability. Overall, this dataset reflects a
diverse range of clinical presentations, spanning early and advanced disease states. Therefore, with
this clinical data, models trained with a rich multimodal foundation approach can be developed.
Examples of clinical data are shown in Table 2.

Table 2 Sample of clinical records including als and healthy control (HC) subjects

Genetic ALSFRS- Cantagallo

D Category Test FVC% R_TotalScore Questio?mai re
CT001 HC - - - 7,0
CT004 HC - - - 0,0
CT010 HC - - - 22,0
CT069 HC - - - 11,0
PZ111 ALS C90RF72 104 43 49,0

expansion

PZ112 ALS negative 64 20 . 89,0
Pz114 ALS negative 98 40 ... 18,0
Pz115 ALS negative 92 40 ... 3,0

The voice data used in this study were systematically collected from HC and ALS subjects. The voice
recordings included phonated vowels (A, I, U, E, O) and rhythmic syllables (KA, PA, TA). Each
phonation or syllable type contained a total of 153 recordings, with a distribution of 51 recordings
from HC individuals and 102 recordings from ALS patients. Overall, the dataset contained 408
recordings for HC and 816 recordings for ALS. These recordings were later transformed into Mel-
Spectrogram representations during the CNN-based feature extraction and modeling stages. The
distribution of the recording data in the form of a pie chart for each phonation and rhythmic syllable is
shown in Figure 6. This distribution provides an overview of the balance of the dataset and sample
coverage across the various vocal tasks in this study.

http.//sistemasi.ftik.unisi.ac.id

226



Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 15, Nomor 1, 2026: 220-236 e-ISSN:2540-9719

Number of Sample

HC
33%

ALS
67%

Figure 6 Distribution of voice recordings for HC and ALS subjects across phonation
vowels and rhythmic syllables.
B. Preprocessing
Clinical and voice data were preprocessed to ensure data quality and consistency for subsequent
data processing and modeling. Two types of preprocessing were performed due to the different data
types. First, for clinical data preprocessing, missing values in all numeric columns were handled using
Simplelmputer with a constant strategy of filling in 0. This step ensured that no missing values would
interfere with subsequent analysis and model training. The imputed numeric features were then
combined with categorical features that had been previously converted to numeric representation
through encoding. This data then formed a complete tabular feature matrix. To ensure that all features
were on a consistent scale and compatible with machine learning algorithms, the feature matrix was
normalized using MinMaxScaler. This technique works by scaling each value in a feature column to
the range 0-1. This approach ensures uniform feature scaling and reduces bias due to differences in
magnitude. This approach aims to improve the stability and predictive performance of the model.
Table 3 shows the results of clinical data preprocessing.
Table 3 Overview of clinical data preprocessing including missing value imputation and
feature normalization

Geneti Genetic Genetic Genetic
c Test Test Test Test

. ALSFRS Cantagallo
D Categor SOD1 TARDB C90ORF7 negativ FVC RTotal .. Questionnair
y P 2 e % S
. core e
expansio

n
CT00
) HC 0 0 0 0 0 0 0,0538
CTO00
A HC 0 0 0 0 0 0 0
CTo1
0 HC 0 0 0 0 0 0 0,1692
CTO06
o HC 0 0 0 0 0 0 0,0846
pz111  ALS 0 0 1 0 08253 009347 ... 0,3769
Pz112  ALS 0 0 0 1 05079 04347 ... 0,6846
p7114  ALS 0 0 0 1 07777 08695 ... 0,1384
pz115  ALS 0 0 0 1 07301 08695 ... 0,0230

The second preprocessing is to prepare the audio data. The initial sound recording was first converted
to 16-bit mono-channel PCM and resampled to 22.05 kHz. The sound signal in the recording was then
processed with silence removal. Figure 7 illustrates an example of a sound waveform before and after
silence removal. Silence removal in the sound benefits the extraction process by focusing only on
relevant sound segments. It will also impact the computation process of Mel-Spectrogram features
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and CNN-based modeling more efficiently. As shown in the figure, the original signal, which was
originally 14 seconds long, is now reduced to 12 seconds after silence removal.

Waveform Before Silence Removal

0.6

0.4

024

0.04

Amplitude

—0.24

—0.4

4] 2 4 6 8 10 12 14
Time [s]

Waveform After Silence Removal

0.6 9

044

0.2

0.0

Amplitude

-0.24

—0.4 4

] 2 4 6 8 10 12
Time [s]

Figure 7 Voice signal before and after silence removal

C. Feature Extraction

The features extracted from preprocessed voice recordings are then represented as Mel-
Spectrograms. Mel-Spectrograms are the features of a voice that characterize each voice signal in the
time and frequency domains. Figure 8 shows an example of the results of feature extraction in the
form of Mel-Spectrograms for audio of healthy controls (HC) and ALS patients when pronouncing U
phonation. From the Mel-Spectrogram image, a clear difference in spectral patterns is visible that
reflects the voice disorders of patients with ALS and healthy ones. In the Mel-Spectrogram, different
spectral patterns between healthy controls (HC) and ALS patients can be observed where the HC
shows clearer and more stable harmonics. The energy distribution is also more uniform over time.
This condition occurs because the vibration of the vocal cords in healthy individuals is more normal
and the phonation is stable (no vibration or oscillation). In contrast, the ALS Mel-Spectrogram sample
has an irregular and less stable harmonic structure, with more variability in amplitude and frequency
over time. This reflects that there is a disturbance in voice production due to neuromuscular
degeneration in ALS patients. These differences explain to the model that the potential of Mel-
Spectrogram features to capture the characteristics of ALS-related dysarthria can be effectively
utilized later by CNN-based deep learning models.

Melspectrogram

+0dB
-10dB
2048 -20dB

-30dB

CTO001
(HC)

1024 -40 dB

-50 dB

Mel Frequency (Hz)

512 -60 dB
-70dB
-80 dB

Time (s)

Melspectrogram

+0dB
-10dB
2048 -20dB

-30dB

Pz111
(ALS)

1024 -40 dB

-50 dB

Mel Frequency (Hz)

512 -60 dB
-70de

-80 dB

0 5 10 15
Time (s)

Figure 8 Mel-Spectrogram of voice recordings for healthy controls (HC) and ALS patients on
phonation “U”
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D. Modeling

The convolutional neural network models were developed according to the experimental scenarios
outlined in Table 1, varying in the number of convolutional layers, filter sizes, and pooling types.
Among all tested scenarios, the S1B configuration, which consists of a single convolutional layer with
16 filters of size 3x3 followed by AveragePooling (2x2), demonstrated the best performance and was
therefore adopted as the CNN backbone for the multimodal model. The multimodal architecture,
illustrated in Figure 9, integrates features from both the CNN-based Mel-Spectrogram extractor and
tabular clinical data. The image branch includes a Conv2D layer with 16 filters, AveragePooling,
Dropout (0.3), Flatten, and a fully connected layer with 256 neurons, while the tabular branch
contains fully connected layers with 64 and 32 neurons, interleaved with BatchNormalization and
Dropout (0.3). Features from both branches are concatenated and passed through a Dense layer with
64 neurons before the final softmax classification layer. The model was trained with an input image
size of 128x128, batch size of 32, and up to 100 epochs, using 5-fold stratified cross-validation.
Training included early stopping, learning rate reduction on plateau, and checkpointing to save the
best model based on validation loss. This multimodal design allows the network to jointly learn from
spectral and clinical features, enhancing its discriminative capability for ALS detection..
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Figure 9 Architecture of the multimodal model combining Mel-Spectrogram-based CNN
features and tabular clinical data for ALS classification
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E. Evaluation

1) Performance Evaluation Results

The performance of the CNN models under various experimental scenarios and dropout rates is
summarized in Table 4. Accuracy was calculated for all configurations and used as the primary metric
to compare scenarios and guide model selection. Among all scenarios, S1B consistently achieved the
highest performance, with a peak accuracy of 80.33 percent at a dropout rate of 0.3, outperforming
deeper architectures and alternative pooling types. Although the models were also evaluated using
precision, recall, and F1 score, the table reports only accuracy as a summary metric for clarity.
Detailed evaluation including all four metrics, accuracy, precision, recall, and F1 score, will be
presented later for the best-performing S1B model and the finalized multimodal model.

Table 4 Summary of model accuracy for all experimental CNN scenarios

Accuracy
. Average
Scenario  Dropout Dropout Dropout Dropout Dropout No (Eacf?
Code Rate Rate Rate Rate Rate

05 (04 (03 (02  (01) Propout Scenario)
SIA  77.96% 77.46% 7910% 7755% 77.87% 77.87%  77.97%
SIB  7837% 7633% 8033% 7837%  76,64% 77.05%  77.85%
S2A  66.94%  66.94%  69,26% 73.88%  72.95%  76,23%  71,03%
S2B 66.94% 70.90% 6844% 72.95%  7592%  73.36%  7142%
S3A  6694% 66.94% 6694% 66.80% 7551% 7418%  69.55%
S3B  6694% 67.76% 6816% 7008% 72.95% 77.87%  70.63%
SAA  6694% 66.94% 6694% 66.94% 6857% 7510%  68.57%
SAB  66.94% 66.94% 66.94%  66.94% 69.80% 73.06%  6844%
S5A  6694% 66.94% 66.94% 66.94%  66.94% 76.23%  68.49%
S5B  6694% 66.94% 6694%  66.94% 67.35% 7090%  67.67%

Average
(Each

Dropout  69,19% 69.41% 70,00%  70,74%  72,45%  7519%

and No
Dropout)

2) Effect of Dropout and Pooling Layer

Figure 10 illustrates the impact of varying levels of dropout layer probability on the performance of
all the CNN models tested. Among all the model architecture configurations trained and evaluated,
the model with scenario code S1B consistently achieved the highest accuracy. Its accuracy peaked at
around 80.33% at a dropout probability of 0.3. It is concluded that the architecture consisting of a
single layer of CNN network with AveragePooling effectively captures the discriminative features of
the Mel-Spectrogram. This model is also able to maintain strong generalization under the
regularization strategy of the dropout layer. In contrast, deeper models or their architectures with more
and more complex ones (from S2-S5) show lower accuracy. The decreasing accuracy occurs
especially at higher levels of dropout probability. This could be due to the increase in model
complexity causing overfitting or difficulty learning from the relatively limited and less complex Mel-
Spectrogram data. At low dropout layer probabilities (0-0.2), the performance of the deeper models
shows a slight improvement but does not surpass that of S1B. Higher dropout values, from 0.4 to 0.5,
lead to a decrease in performance in almost all models. This can also be explained by the
regularization technique that uses dropout layers; excessive deactivation of neurons during training
leads to underfitting. As a result, simpler models are sufficient for this task. Furthermore, increasing
model complexity while simultaneously reducing the number of dropouts can result in
counterproductive models. Deeper architectures are generally more sensitive to regularization and
may fail to fully learn from the data. In this study, experiments with code S1A implementing
MaxPooling performed worse than S1B implementing AveragePooling. Therefore, average pooling
provides a more stable feature representation for ALS speech classification.
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PERFORMANCE ON DROPOUT RATE

—4—S1A ——S1B S2A S2B ==k=S3A

—@—S3B =—+—54A S4B S5A ——S5B

83.00%

80.00%

77.00%

74.00%

ACCURACY (%)

71.00%

68.00%

65.00%
(0.5) (0.4) (0.3) (0.2) (0.1) NO
DROPOUT

DROPOUT RATE

Figure 10 Effect of varying dropout rates on the accuracy of different CNN model
configurations (S1-S5)

The average performance of all CNN configurations across varying dropout rates is illustrated in
Figure 11. In the graph, the scenario with code S1 consistently outperforms other models with deeper
architectures. It achieved an average accuracy of 77.97% with MaxPooling as its pooling layer.
Furthermore, the model using AveragePooling as its pooling layer achieved 77.85%. Conversely,
deeper architectures with 2-5 layers (S2-S5) showed increasingly lower accuracy. Here, the
experiment with scenario code S5 only achieved 68.49% (for MaxPooling layer and 67.67% when
using AveragePooling. The results show that increasing the depth or in this case adding layers and the
number of kernels in the CNN model does not necessarily improve the performance of Mel-
Spectrogram-based ALS sound classification. This could be because the spectral features in the audio
are not too complex and can be captured effectively by a simpler architecture. In addition, for the
influence of the type of pooling layer used in the model, MaxPooling is slightly superior to
AveragePooling in the S1 code scenario. It can be concluded that the strategy of using the type of
pooling layer has a small influence when compared to the overall model complexity. The findings in
this study strengthen that a simpler CNN model with moderate pooling is sufficient to achieve stable
and high performance on the dataset used in this study.

Performance Pooling Layer on All Dropout

S

> 80.00%

£ 75.00%

3 70.00%

< 65.00%

& 60.00%

Z o g

Scenario Number of CNN Layers

B MaxPooling ™ AveragePooling

Figure 11 Performance of pooling layer
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3) Multimodal Fusion Analysis
The evaluation results of the model based on the number of features used in the dataset are presented
in Table 5. It can be seen that using only audio features, the model achieved an accuracy of 80.33%,
with precision, recall, and F1-score ranging from 79-80%. This indicates that the voice features
represented in the Mel-Spectrogram form provide sufficient discriminatory information for the ALS
classification task. However, some misclassification errors still occur, so the performance is still not
perfect. In contrast, by combining features from audio and clinical data, the model can achieve
excellent performance in all metrics (accuracy, precision, recall, and Fl-score of 100%). This
phenomenon indicates that the integration of multimodal data substantially improves the model's
discriminatory ability. These results also provide several important insights. First, although audio
features are informative, the incorporation of complementary clinical data allows the model to resolve
ambiguities that cannot be captured by the voice signal alone. Therefore, the model is able to clearly
produce class boundaries between ALS and HC that are indeed completely separable. Second, the
performance gap between single and multimodal inputs underscores the superiority of multimodal
approaches in distinguishing ALS patients. This also suggests that even when heterogeneous
information sources describe the same object, these data synergistically improve the predictive
performance of models with multiple variables/features to consider during training and prediction.
Finally, the findings of this study emphasize that for practical applications, models need to combine
clinical indicators with voice features or even other features that could provide highly reliable
predictions for ALS detection.
Table 5 Model performance using single and multimodal features

Performance
Feature Precision Recall S(I::olre Accuracy
Audio 80,15% 80,33%  79,29% 80,33%
Audio & Clinical 100% 100% 100% 100%

Figure 12 presents the confusion matrix of the S1B model trained on audio features alone, while
Figure 13 shows the confusion matrix of the same model trained on a combination of audio recordings
and clinical data. These confusion matrices provide clearer insights into the misclassification patterns
and the level of misprediction within each class. For the audio-only model, misclassification is clearly
visible, with 12 ALS samples predicted as HC, and 36 HC samples misclassified as ALS. This
indicates that while the Mel-Spectrogram feature captures useful discriminatory patterns for model
training, the model still experiences ambiguity in distinguishing between ALS and HC. This is likely
due to overlapping voice characteristics between some ALS patients and healthy individuals. In
contrast, the model trained on multimodal data achieved perfect classification, with all ALS and HC
samples correctly predicted. This demonstrates that integrating clinical features with audio signals
provides complementary information, resolving ambiguity and significantly improving the model's
ability to distinguish between ALS patients and healthy individuals. These results highlight that the
advantage of a training approach using multimodal data in ALS detection (heterogeneous data
sources) can produce fully separable class boundaries and maximize the predictive performance of a
model.
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Figure 14 Loss and accuracy curves of the multimodal model on Fold 4

The multimodal model exhibits stable convergence across training epochs, as shown in Figure 14. The
left figure illustrates the training loss, and the right figure shows its accuracy for Fold 4. This is
because Fold 4 is the fold that yields the best model performance. As can be seen, the training and
validation loss curves decrease rapidly and stabilize near zero after about ten epochs. This indicates
effective learning without any indication of overfitting. Similarly, the accuracy curve remains
consistently high, approaching 100% accuracy throughout the training process. These results confirm
that the multimodal data fusion approach (Mel-Spectrogram and clinical data) can effectively achieve
excellent generalization performance across validation folds. However, it is also worth noting that this
near-perfect accuracy can also be attributed to the influence of clinical features that are highly
informative for ALS cases. Conversely, some clinical features are missing or uninformative for
Healthy Controls (HC), as these particular indicators or features are unique to ALS patients. This
imbalance in feature richness gives the model a more robust classification capability for ALS
detection.

T T T
0 10 20

5 Conclusion

Based on the study results, the diagnosis of Amyotrophic Lateral Sclerosis (ALS) using a deep
learning model is highly effective. Training and evaluation using CNNs show that performance is
highly dependent on the architecture selection based on the number of layers, dropout, and training
scenario. The best model accuracy on audio-only data reached 80.33% with a CNN with one
convolutional layer, average pooling, and a dropout probability of 0.3. This indicates the importance
of designing a robust CNN for speech-based ALS detection. Furthermore, when combined with
clinical data, the model achieved 100% accuracy. The main scientific contribution of this study lies in
the establishment of an ALS diagnostic framework using multimodal data, namely integrating non-
invasive speech biomarkers with clinical data, with results that significantly improve diagnostic
accuracy. These findings confirm that while audio morphology provides valuable non-invasive
biomarkers, integration with clinical data results in a more robust diagnostic system. However,
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challenges remain, particularly the limited number of healthy controls and the missing clinical
features that are unique to ALS patients. Future research recommendations include expanding the size
and balance of datasets, improving the comprehensiveness of clinical data, particularly for healthy
patients, and exploring other, more sophisticated deep learning architectures. These architectures
include attention-based models or transformer/transfer learning models validated using real-world
data. This is expected to result in systems developed for ALS diagnostics that are more scalable and
practical, and integrate explainable Al models to ensure the interpretability of diagnostic decisions.
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