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Abstract 
Amyotrophic Lateral Sclerosis (ALS) is a highly progressive neurodegenerative disease that impairs 

motor and speech function. Conventional diagnostic methods, both invasive and non-invasive, are 

often time-consuming and produce limited sensitivity. This leads to delays in treatment and worsening 

disease progression. This study proposes a multimodal deep learning framework that utilizes and 

integrates invasive medical records with non-invasive morphological features of patient speech audio 

extracted into Mel-Spectrograms. Unlike previous studies that focused solely on speech or clinical 

features, this study introduces an integrated multimodal diagnostic framework that effectively 

combines both data sources to achieve reliable diagnostic accuracy. The study included two 

experimental scenarios. In the first scenario, the audio-trained model used a Convolutional Neural 

Network (CNN) and was systematically optimized by testing variations in network depth, feature 

fusion techniques, and layer dropout probabilities to improve model generalization and stability. From 

the experimental results of the first scenario, the CNN achieved the best performance, achieving 

80.33% accuracy in classification using audio data alone from all the tested model variations. In the 

second experimental scenario, when the best model was trained by incorporating clinical data, the 

model demonstrated improved diagnostic performance, achieving 100% accuracy. This finding 

highlights the importance of combining data modalities or sources from various domains, both 

invasive and non-invasive, to achieve optimal model performance for early ALS detection. 

Keywords: amyotrophic lateral sclerosis, audio morphology, clinical records, convolutional neural 

network, multimodal 

 

1 Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that primarily 

affects motor neurons in the brain and spinal cord. This condition ultimately leads to muscle weakness 

and paralysis [1], [2]. As the disease progresses, individuals with ALS experience a gradual decline in 

voluntary muscle function. This is characterized by impairments in speech, mobility, swallowing, and 

even breathing [3]. Given its fatal nature and the lack of a definitive cure, early diagnosis is crucial to 

allow for therapeutic interventions that can slow disease progression and improve quality of life [[4], 

[5], [6]. Despite its great urgency, ALS diagnosis still relies heavily on conventional clinical 

assessment and electromyography (EMG). Both are invasive, expensive, and require specialized 

expertise [7]. Furthermore, these diagnostic methods are often time-consuming and inaccessible in 

many clinical settings. This results in delays in diagnosis and subsequent treatment initiation [8]. Such 

delays are detrimental, as interventions tend to be less effective once the disease has reached an 

advanced stage. 

Another additional challenge in diagnosing ALS is its complex and multifactorial nature. It not 

only affects motor function but also impairs a person's ability to speak due to damage to the motor 

neurons that control vocal articulation. As a result, ALS sufferers often experience tremors when 

speaking [9]. In this context, speech analysis has recently emerged as a promising non-invasive 

biomarker for the early detection of ALS. This analysis offers the potential for early screening 

through detectable acoustic and prosodic changes in the patient's voice [10], [11], [12]. However, 

most previous studies on ALS detection systems suffer from critical limitations. These studies have 
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used only one type of data, either invasive or non-invasive data [13-29]. This limited approach ignores 

the multidimensional nature of ALS symptom data. Multidimensionality means that ALS has diverse 

clinical and physiological symptoms, where all of these data can provide complementary insights 

when analyzed within an integrated framework. The lack of an approach to combining these multi-

modal data in current diagnostic systems represents a missed opportunity to leverage all ALS-related 

indicators to produce a more accurate and reliable early identification or detection system. 

To address these issues, this study proposes a novel diagnostic system approach. The proposed 

diagnostic system integrates both invasive and non-invasive data modalities. Specifically, this study 

combines clinical information, such as genetic markers and other neurological assessments, with 

voice-based audiomorphological features represented through Mel-Spectrograms. This representation 

is then processed using a convolutional neural network (CNN) model. The CNN model processes the 

data and recognizes patterns within the two datasets. To produce a high-performance model, the 

model is trained and validated using K-Fold Cross-Validation. It is then optimized using the Adam 

Optimizer and Early Stopping to ensure optimal generalization and prevent overfitting. Through this 

integrated and structured framework, this study aims to develop an ALS diagnostic system by 

improving classification performance and enhancing system robustness. This research contributes to 

the field of deep learning and medical diagnostics for ALS. This research approach not only 

strengthens diagnostic capacity by leveraging diverse data sources but also encourages the 

development of non-invasive, efficient, and scalable diagnostic tools. It is hoped that it can be 

developed and applied to a wider clinical sector. 

 

2 Literature Review 

Recently, ALS detection models have been extensively explored through various modalities or 

data types and machine learning techniques. For example, Antunes et al. [13] proposed the use of 

surface electromyography (sEMG) features processed using the AdaBoost model. Their research 

showed promising results in early ALS identification. In Rong et al. [14], they investigated how 

sEMG and acoustic sound features were combined. The results showed that multimodal data 

integration significantly improved the model's performance in ALS detection. Similarly, in Cebola et 

al. [15], audio signals underwent feature extraction by segmenting through windowing and testing 

several machine learning models. Their research showed that the Support Vector Machine (SVM) 

model outperformed other models. 

The use of other types of data from ALS symptoms is used, such as the identification approach 

by models with input data from MRI. MRI itself is a feature for ALS detection extracted from brain 

imaging data. In the studies of Tafuri et al. [16], Jamrozy et al. [17], and Kocar et al. [18], they used 

MRI data and showed that the SVM model was the most effective in ALS detection. Furthermore, 

research conducted by Tena et al. [19], they tried to utilize time-frequency features and phonatory 

sounds trained on a random forest model. Research by Kurmi et al. [20] even introduced wavelet time 

scattering transforms on acoustic features and compared the performance of several deep learning 

architectures. The deep learning models used included Deep Neural Networks (DNN), Long Short-

Term Memory (LSTM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks 

(RNN). Their findings revealed that DNN and CNN provided superior performance. 

Another study in acoustic-based ALS detection is the work of Simmatis et al. [21]. Here they 

explored various acoustic features to distinguish between ALS patients and those without. Then, the 

study by Bhattacharjee et al. [22], they compared pitch and Mel-Frequency Cepstral Coefficients 

(MFCC). The results confirmed that the pitch feature has robustness in noisy environments. The study 

by Wang et al. [23] introduced an architecture named Longitudinal Speech Transformer for temporal 

analysis of speech in ALS patients. Meanwhile, the study by An KH et al. [24] who extracted 

statistical features from intelligible speech and trained it on CNN mode was successful for ALS 

detection at an early stage. Recent studies have also shown how to integrate advanced pre-trained 

models and equipped with hybrid feature extraction strategies. The study by Jayakumar et al. [25] 

used the HuBERT model for hypernasality detection and ALS patient detection using a Dense Neural 

Network deep learning model. Another study by Ilias et al. [26], they used voice features extracted by 

MFCC and used a hypernetwork variant model based on AlexNet. Research by [27] used neural 

networks to predict ALS progression by utilizing ALS Functional Rating Scale (ALSFRS) data. Also 
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research conducted by Faghri et al. [28], they used clinical data to personalize ALS subtypes. In a 

different type of modality, Ngo TD et al. [29] proposed the use of Electroencephalogram (EEG) 

signals and eye movement recordings to assess ALS-related motor dysfunction. These features are 

relatively new and different from other features. However, they are still obtained from observable 

symptoms experienced by ALS patients. So from there we can see that there are many types of data 

that can be obtained from people with ALS. 

Of all the studies discussed above, there are still significant limitations in each study. This 

limitation is that most approaches focus on a single data modality, whether it is data obtained 

invasively (e.g., clinical, MRI, EEG) or non-invasive (e.g., voice, sEMG). These studies have not 

considered integrating both types of data into an integrated diagnostic system. Also considering that 

the complexity of ALS symptoms comes from the entire motor, respiratory, and vocal systems [30-

31]. By integrating various data sources, it is hoped that it can provide a more comprehensive and 

accurate diagnostic representation. Because the learning model will have many features or variables 

that need to be learned and considered just to detect whether someone has ALS or not. Assessments in 

the form of clinical data [32], MRI imaging [33], muscle ultrasound [34], and voice signals each 

capture unique aspects of ALS symptoms. Although the potential of each modality has been proven, 

previous studies still lack multimodal integration, thus strengthening the gap in previous studies. The 

hypothesis of this study is that a diagnostic system that processes clinical and speech data 

simultaneously can offer more holistic and reliable predictive capabilities. Therefore, to address the 

existing gaps in previous research, this study proposes a multimodal ALS detection framework, which 

combines clinical data (invasive) and Mel-Spectrogram representations of speech signals (non-

invasive), into a CNN-based model. In addition to proposing the integration of these data, this study 

will also introduce several technical contributions that can be observed from the workflow. These 

contributions include, first, deep feature extraction from Mel-Spectrogram using various CNN 

configurations (number of layers, fixed kernel size, max/average pooling). Second, the use of varying 

dropout probabilities for regularization. And third, is implementing performance optimization through 

K-Fold Cross-Validation, Adam Optimizer, and Early Stopping. Thus, this study proposes an ALS 

diagnostic system with a novel approach. This not only addresses the practical need for a scalable and 

non-invasive ALS screening tool but also opens new directions for future research in multimodal 

health informatics and intelligent neurodiagnostics. 

 

3 Research Method 
The research methodology, or stages, of this study were designed to ensure a systematic and 

organized workflow. A flowchart of the research stages is presented in Figure 1. Figure 1 shows the 

sequential steps to be undertaken in this study. This research begins with data collection, followed by 

data preprocessing, and then feature extraction. The data preprocessing stage aims to clean and 

prepare the data. The feature extraction stage aims to capture relevant characteristics of the data used 

before modeling. The next stage is the modeling and model evaluation stage. 

 
Figure 1  Research Flowchart 
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A. In the Data Collection stage, this stage includes obtaining medical record datasets and voice 

recordings for ALS diagnosis as explained in the research [35]. There are several parameters or 

clinical features that can be obtained to distinguish between healthy individuals and those suffering 

from ALS. These features include genetic markers (C9orf72, SOD1, FUS, TARDBP) [36], [37], 

[38], pulmonary function (FVC%), difficulty swallowing score, Revised ALS Functional 

Assessment Scale (ALSFRS-R), King's Clinical Stage, Medical Research Council (MRC) Score, 

namely muscle strength score, and Penn Upper Motor Neuron Score (PUMNS). Then for voice 

data collected from ALS patients and healthy controls. Data collected were obtained from 153 

subjects, with 102 of them being ALS patients and 51 healthy controls. 

B. Data preprocessing is the stage for preparing tabular (clinical) data and voice data before feature 

extraction to ensure the quality and consistency of each data. For tabular data, preprocessing 

involves handling missing values and maintaining the consistency of clinical data using Min-Max 

scaling. The value scaling technique on data using Min-Max is defined in Equation 1 [39]. For 

audio data, the data is converted to WAV format (16-bit, mono) to be compatible with the 

subsequent processing flow. Then, silence removal will be performed to remove silent or noisy 

segments in the voice signal. Resampling of the voice signal is also performed to standardize the 

sample rate across recordings at 22.05 kHz. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
  (1) 

Where, 

𝑋𝑚𝑖𝑛 : the minimum value in the dataset 

𝑋𝑚𝑎𝑥 : the maximum value in the dataset 

𝑋  : the data value to be scaled 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 : the data value after scaling 

C. The feature extraction stage is a process carried out to obtain important information/characteristics 

from voice data. This stage aims to represent the voice signal in a more concise and meaningful 

form without losing its essential characteristics. The method used in this study is MFCC [40], [41], 

[42], with the procedure illustrated in Figure 2. 

 
Figure 2  MFCC processing steps 

MFCC processing begins with pre-emphasis to apply a high-pass filter to the speech signal. This 

process aims to amplify the signal and enhance its high-frequency components. Next, the signal is 

segmented into short frames, with or without overlap. This process is called framing. After the 

framing process, the next process is windowing. The Hamming window used in this study 

functions to reduce spectral distortion and optimally capture signal features. The application of the 

Hamming window is explained in Equation (2). 

𝑊(𝑛, 𝑎) = (1 − 𝑎) − acos (
2𝜋𝑛

𝑁 − 1
) ,            (2) 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤ 𝑁 − 1  
𝑊(𝑛) represents the Hamming window and S(n) enotes the signal frame from n = 0 to n = N -1. 

Fast Fourier Transform (FFT) is applied to convert the signal from the time domain to the 

frequency domain, as defined in Equation (3). Here, Si(n)  represents the time-domain signal, 

zi(k) denotes the frequency-domain signal,  ℎ(𝑛) is the window of length N samples, and k 

corresponds to the FFT length. 

𝑧𝑖(𝑘) = ∑ 𝑆𝑖(𝑛)ℎ(𝑛)𝑒
−2𝜋

𝑁𝑁
𝑛=1                         (3) 

After the FFT process, the next process is the application of the Mel Filterbank which is useful for 

adjusting the frequency representation to suit human hearing sensitivity. The method is by 

converting the linear frequency f (Hz) to the Mel scale 𝑓𝑚𝑒𝑙) according to Equation (4). Each 
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𝑓𝑚𝑒𝑙) is then mapped to its corresponding filter in the filterbank. Then, the Logarithm process is 

applied to the filterbank output which is calculated to approximate human perception of sound 

intensity. Finally, the Discrete Cosine Transform (DCT) is applied to convert the signal back from 

the frequency domain to the time domain. This process produces the MFCC coefficients as a 

feature vector, as defined in Equation (5). Here, 𝐶𝑚 represents the DCT results for m = 1, 2, ..., 12. 

N is the number of filterbanks, and 𝐸𝑘 represents the logarithmic output. The output of the MFCC 

process will be used as a feature, which can be visually represented in the form of a Mel 

Spectrogram.  

𝑓𝑚𝑒𝑙 = 2595 𝑙𝑜𝑔10 (1 +
𝑓

700
)                       (4) 

𝐶𝑚 =  ∑ cos (𝑚(𝑘 − 0.5)
𝜋

𝑁
) 𝐸𝑘

𝑁
𝑘=1               (5) 

D. In the Modeling stage, CNN is designed and built to process Mel-Spectrogram. CNN is used 

because of its ability to capture spatial patterns and complex features, especially in the form of 

images [43]. The CNN architecture will include a convolutional layer with ReLU activation 

followed by a pooling layer that functions for feature dimensionality reduction. There is an 

optional dropout layer for regularization. And at the end of the CNN there will be a Fully 

Connected Layer (FCL) used to process Mel-Spectrogram features with combined clinical data. In 

the multimodal data fusion process, audio features extracted from Mel-Spectrogram are combined 

with clinical data using a concatenate layer. Where each modality first needs to be processed in its 

respective neural network branch before being combined for multimodal classification. The output 

layer of this architecture uses Sigmoid activation which is suitable for binary classification with 

Binary Cross-Entropy Loss as its loss function. To develop a model with multimodal data input, 

initial investigations of CNN architecture were carried out first by varying the number of 

convolutional layers, pooling strategy, and dropout configuration. This systematic exploration is 

summarized in Table 1. These architectural variations were designed to identify the most effective 

architectural setup for capturing relevant patterns in Mel-Spectrogram data before integration with 

clinical features. 

Table 1  CNN architecture scenarios for melspectogram modeling 

Research  

Scenario 

Scenario 

Code 
#Conv Layers Filters & Kernel Size Pooling Type 

S1 
S1A 1 Conv(16, 3x3) MaxPooling(2x2) 

S1B 1 Conv(16, 3x3) AveragePooling(2x2) 

S2 
S2A 2 Conv(16, 3x3) → Conv(32, 3x3) MaxPooling(2x2) 

S2B 2 Conv(16, 3x3) → Conv(32, 3x3) AveragePooling(2x2) 

S3 

S3A 3 
Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) 

MaxPooling(2x2) 

S3B 3 
Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) 

AveragePooling(2x2) 

S4 

S4A 4 

Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) → Conv(128, 

3x3) 

MaxPooling(2x2) 

S4B 4 

Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) → Conv(128, 

3x3) 

AveragePooling(2x2) 

S5 

S5A 5 

Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) → Conv(128, 

3x3) → Conv(256, 3x3) 

MaxPooling(2x2) 

S5B 5 

Conv(16, 3x3) → Conv(32, 3x3) 

→ Conv(64, 3x3) → Conv(128, 

3x3) → Conv(256, 3x3) 

AveragePooling(2x2) 
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The model was trained using K-Fold Cross Validation to optimize performance and minimize bias 

[44], as illustrated in Figure 3. For example, if K = 4, the dataset is divided into four folds. This 

means the model is trained on three folds and tested on the remaining folds. This process is 

repeated four times, with each fold serving once as the test dataset. The final evaluation results are 

obtained by averaging the performance across the four iterations. This results in a more stable 

evaluation of the model and reduces bias in the model performance assessment. In this study, the 

evaluation of the training and testing split/model ratios was performed using a 5-fold cross-

validation scheme. 

 
Figure 3  Schematic representation of k-fold cross validation 

Next, optimization during the training process is performed using the Adam optimizer. Early 

stopping is also applied to prevent overfitting. The Adam optimizer works adaptively by adjusting 

the learning rate of each parameter, as illustrated in Figure 4. With this optimization, the model is 

able to avoid local minima and approach global minima. This approach can speed up and stabilize 

the training process [45]. 

 
Figure 4  Schematic representation of the adam optimizer 

Early Stopping works by stopping model training when performance on validation data begins to 

decline. This phenomenon is illustrated in Figure 5. This technique prevents overfitting and 

ensures the model remains able to generalize to previously unseen data [46]. All procedures in this 

study were implemented using Python with the TensorFlow framework.  

 
Figure 5  Schematic representation of the early stopping mechanism 

E. Evaluation is the stage where the trained model is then tested with test data to assess its 

performance. Evaluation in this study was conducted using four main metrics, namely Precision, 

Recall, F1 Score, and Accuracy. The calculation of each evaluation metric is defined in Equation 

(6–9) [47]. Here, TP is the number of correct predictions for the positive class. TN is the number 

of correct predictions for the negative class. Then FP is the number of incorrect predictions for the 

positive class. And finally FN is the number of incorrect predictions for the negative class. 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

F1 − Score =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(8) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (9) 

4 Results and Analysis 

A. Data Collection  

The clinical dataset used in this study consists of 35 features that comprehensively capture the 

demographic, genetic, functional, and neurological aspects of ALS patients and healthy controls. The 

main features in the dataset include diagnostic metrics and disease duration (DiagnosticDelay, 

DiseaseDuration), pulmonary function (FVC%), and functional ability assessed using the ALS 

Functional Rating Scale Revised (ALSFRS-R). Because the ALSFRS-R contains several attribute 

columns, these features will be further broken down into subscores to measure the ability to speak, 

salivate, swallow, handwriting, cut food, dress and personal hygiene, turning over in bed, walking, 

climbing stairs, dyspnea, orthopnea, and respiratory insufficiency. The dataset also includes a feature 

in the form of motor function evaluated using the Medical Research Council (MRC) score for head, 

upper limb, and lower limb muscles. Along with the Penn Upper Motor Neuron Score (PUMNS) for 

bulbar, upper limb, and lower limb involvement. There is a disease stage feature recorded through the 

King Clinical Stage and the severity of dysarthria is assessed using the Cantagallo Questionnaire. 

Additionally, genetic information for key genes in patients with ALS (SOD1, TARDBP, C9orf72, 

FUS) was collected. Region of disease onset and treatment status were also documented. The Revised 

El Escorial Criteria were included to categorize disease probability. Overall, this dataset reflects a 

diverse range of clinical presentations, spanning early and advanced disease states. Therefore, with 

this clinical data, models trained with a rich multimodal foundation approach can be developed. 

Examples of clinical data are shown in Table 2. 

Table 2 Sample of clinical records including als and healthy control (HC) subjects 

ID Category 
Genetic 

Test 
FVC% 

ALSFRS-

R_TotalScore 
… 

Cantagallo 

Questionnaire 

CT001 HC - - - … 7,0 

CT004 HC - - - … 0,0 

CT010 HC - - - … 22,0 

CT069 HC - - - … 11,0 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

PZ111 ALS C9ORF72 

expansion 

104 43 
… 

49,0 

PZ112 ALS negative 64 20 … 89,0 

PZ114 ALS negative 98 40 … 18,0 

PZ115 ALS negative 92 40 … 3,0 

 

The voice data used in this study were systematically collected from HC and ALS subjects. The voice 

recordings included phonated vowels (A, I, U, E, O) and rhythmic syllables (KA, PA, TA). Each 

phonation or syllable type contained a total of 153 recordings, with a distribution of 51 recordings 

from HC individuals and 102 recordings from ALS patients. Overall, the dataset contained 408 

recordings for HC and 816 recordings for ALS. These recordings were later transformed into Mel-

Spectrogram representations during the CNN-based feature extraction and modeling stages. The 

distribution of the recording data in the form of a pie chart for each phonation and rhythmic syllable is 

shown in Figure 6. This distribution provides an overview of the balance of the dataset and sample 

coverage across the various vocal tasks in this study. 
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Figure 6  Distribution of voice recordings for HC and ALS subjects across phonation 

vowels and rhythmic syllables. 

B. Preprocessing 

Clinical and voice data were preprocessed to ensure data quality and consistency for subsequent 

data processing and modeling. Two types of preprocessing were performed due to the different data 

types. First, for clinical data preprocessing, missing values in all numeric columns were handled using 

SimpleImputer with a constant strategy of filling in 0. This step ensured that no missing values would 

interfere with subsequent analysis and model training. The imputed numeric features were then 

combined with categorical features that had been previously converted to numeric representation 

through encoding. This data then formed a complete tabular feature matrix. To ensure that all features 

were on a consistent scale and compatible with machine learning algorithms, the feature matrix was 

normalized using MinMaxScaler. This technique works by scaling each value in a feature column to 

the range 0–1. This approach ensures uniform feature scaling and reduces bias due to differences in 

magnitude. This approach aims to improve the stability and predictive performance of the model. 

Table 3 shows the results of clinical data preprocessing. 

Table 3  Overview of clinical data preprocessing including missing value imputation and 

feature normalization 

ID 
Categor

y 

Geneti

c Test 

SOD1  

Genetic 

Test 

TARDB

P 

Genetic 

Test 

C9ORF7

2 

expansio

n 

Genetic 

Test 

negativ

e 

FVC

% 

ALSFRS

-R Total 

Score 

… 

Cantagallo 

Questionnair

e 

CT00

1 
HC 

0 0 0 0 
0 0 … 0,0538 

CT00

4 
HC 

0 0 0 0 
0 0 … 0 

CT01

0 
HC 

0 0 0 0 
0 0 … 0,1692 

CT06

9 
HC 

0 0 0 0 
0 0 … 0,0846 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

PZ111 ALS 0 0 1 0 0,8253 0,9347 … 0,3769 

PZ112 ALS 0 0 0 1 0,5079 0,4347 … 0,6846 

PZ114 ALS 0 0 0 1 0,7777 0,8695 … 0,1384 

PZ115 ALS 0 0 0 1 0,7301 0,8695 … 0,0230 

 

The second preprocessing is to prepare the audio data. The initial sound recording was first converted 

to 16-bit mono-channel PCM and resampled to 22.05 kHz. The sound signal in the recording was then 

processed with silence removal. Figure 7 illustrates an example of a sound waveform before and after 

silence removal. Silence removal in the sound benefits the extraction process by focusing only on 

relevant sound segments. It will also impact the computation process of Mel-Spectrogram features 

HC
33%

ALS
67%

Number of Sample
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and CNN-based modeling more efficiently. As shown in the figure, the original signal, which was 

originally 14 seconds long, is now reduced to 12 seconds after silence removal. 

 
Figure 7 Voice signal before and after silence removal 

C. Feature Extraction 

The features extracted from preprocessed voice recordings are then represented as Mel-

Spectrograms. Mel-Spectrograms are the features of a voice that characterize each voice signal in the 

time and frequency domains. Figure 8 shows an example of the results of feature extraction in the 

form of Mel-Spectrograms for audio of healthy controls (HC) and ALS patients when pronouncing U 

phonation. From the Mel-Spectrogram image, a clear difference in spectral patterns is visible that 

reflects the voice disorders of patients with ALS and healthy ones. In the Mel-Spectrogram, different 

spectral patterns between healthy controls (HC) and ALS patients can be observed where the HC 

shows clearer and more stable harmonics. The energy distribution is also more uniform over time. 

This condition occurs because the vibration of the vocal cords in healthy individuals is more normal 

and the phonation is stable (no vibration or oscillation). In contrast, the ALS Mel-Spectrogram sample 

has an irregular and less stable harmonic structure, with more variability in amplitude and frequency 

over time. This reflects that there is a disturbance in voice production due to neuromuscular 

degeneration in ALS patients. These differences explain to the model that the potential of Mel-

Spectrogram features to capture the characteristics of ALS-related dysarthria can be effectively 

utilized later by CNN-based deep learning models. 

CT001  

(HC) 

 

PZ111 

(ALS) 

 
Figure 8  Mel-Spectrogram of voice recordings for healthy controls (HC) and ALS patients on 

phonation “U” 
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D. Modeling 

The convolutional neural network models were developed according to the experimental scenarios 

outlined in Table 1, varying in the number of convolutional layers, filter sizes, and pooling types. 

Among all tested scenarios, the S1B configuration, which consists of a single convolutional layer with 

16 filters of size 3×3 followed by AveragePooling (2×2), demonstrated the best performance and was 

therefore adopted as the CNN backbone for the multimodal model. The multimodal architecture, 

illustrated in Figure 9, integrates features from both the CNN-based Mel-Spectrogram extractor and 

tabular clinical data. The image branch includes a Conv2D layer with 16 filters, AveragePooling, 

Dropout (0.3), Flatten, and a fully connected layer with 256 neurons, while the tabular branch 

contains fully connected layers with 64 and 32 neurons, interleaved with BatchNormalization and 

Dropout (0.3). Features from both branches are concatenated and passed through a Dense layer with 

64 neurons before the final softmax classification layer. The model was trained with an input image 

size of 128×128, batch size of 32, and up to 100 epochs, using 5-fold stratified cross-validation. 

Training included early stopping, learning rate reduction on plateau, and checkpointing to save the 

best model based on validation loss. This multimodal design allows the network to jointly learn from 

spectral and clinical features, enhancing its discriminative capability for ALS detection.. 

 
Figure 9  Architecture of the multimodal model combining Mel-Spectrogram-based CNN 

features and tabular clinical data for ALS classification 
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E. Evaluation 

1) Performance Evaluation Results 

The performance of the CNN models under various experimental scenarios and dropout rates is 

summarized in Table 4. Accuracy was calculated for all configurations and used as the primary metric 

to compare scenarios and guide model selection. Among all scenarios, S1B consistently achieved the 

highest performance, with a peak accuracy of 80.33 percent at a dropout rate of 0.3, outperforming 

deeper architectures and alternative pooling types. Although the models were also evaluated using 

precision, recall, and F1 score, the table reports only accuracy as a summary metric for clarity. 

Detailed evaluation including all four metrics, accuracy, precision, recall, and F1 score, will be 

presented later for the best-performing S1B model and the finalized multimodal model. 

Table 4  Summary of model accuracy for all experimental CNN scenarios 

Scenario 

Code 

Accuracy 
Average 

(Each 

Scenario) 

Dropout 

Rate 

(0,5) 

Dropout 

Rate 

(0,4) 

Dropout 

Rate 

(0,3) 

Dropout 

Rate 

(0,2) 

Dropout 

Rate 

(0,1) 

No 

Dropout 

S1A 77,96% 77,46% 79,10% 77,55% 77,87% 77,87% 77,97% 

S1B 78,37% 76,33% 80,33% 78,37% 76,64% 77,05% 77,85% 

S2A 66,94% 66,94% 69,26% 73,88% 72,95% 76,23% 71,03% 

S2B 66,94% 70,90% 68,44% 72,95% 75,92% 73,36% 71,42% 

S3A 66,94% 66,94% 66,94% 66,80% 75,51% 74,18% 69,55% 

S3B 66,94% 67,76% 68,16% 70,08% 72,95% 77,87% 70,63% 

S4A 66,94% 66,94% 66,94% 66,94% 68,57% 75,10% 68,57% 

S4B 66,94% 66,94% 66,94% 66,94% 69,80% 73,06% 68,44% 

S5A 66,94% 66,94% 66,94% 66,94% 66,94% 76,23% 68,49% 

S5B 66,94% 66,94% 66,94% 66,94% 67,35% 70,90% 67,67% 

Average 

(Each 

Dropout 

and No 

Dropout) 

69,19% 69,41% 70,00% 70,74% 72,45% 75,19% 

 

 

2) Effect of Dropout and Pooling Layer 

Figure 10 illustrates the impact of varying levels of dropout layer probability on the performance of 

all the CNN models tested. Among all the model architecture configurations trained and evaluated, 

the model with scenario code S1B consistently achieved the highest accuracy. Its accuracy peaked at 

around 80.33% at a dropout probability of 0.3. It is concluded that the architecture consisting of a 

single layer of CNN network with AveragePooling effectively captures the discriminative features of 

the Mel-Spectrogram. This model is also able to maintain strong generalization under the 

regularization strategy of the dropout layer. In contrast, deeper models or their architectures with more 

and more complex ones (from S2-S5) show lower accuracy. The decreasing accuracy occurs 

especially at higher levels of dropout probability. This could be due to the increase in model 

complexity causing overfitting or difficulty learning from the relatively limited and less complex Mel-

Spectrogram data. At low dropout layer probabilities (0-0.2), the performance of the deeper models 

shows a slight improvement but does not surpass that of S1B. Higher dropout values, from 0.4 to 0.5, 

lead to a decrease in performance in almost all models. This can also be explained by the 

regularization technique that uses dropout layers; excessive deactivation of neurons during training 

leads to underfitting. As a result, simpler models are sufficient for this task. Furthermore, increasing 

model complexity while simultaneously reducing the number of dropouts can result in 

counterproductive models. Deeper architectures are generally more sensitive to regularization and 

may fail to fully learn from the data. In this study, experiments with code S1A implementing 

MaxPooling performed worse than S1B implementing AveragePooling. Therefore, average pooling 

provides a more stable feature representation for ALS speech classification. 
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Figure 10  Effect of varying dropout rates on the accuracy of different CNN model 

configurations (S1–S5) 

The average performance of all CNN configurations across varying dropout rates is illustrated in 

Figure 11. In the graph, the scenario with code S1 consistently outperforms other models with deeper 

architectures. It achieved an average accuracy of 77.97% with MaxPooling as its pooling layer. 

Furthermore, the model using AveragePooling as its pooling layer achieved 77.85%. Conversely, 

deeper architectures with 2-5 layers (S2-S5) showed increasingly lower accuracy. Here, the 

experiment with scenario code S5 only achieved 68.49% (for MaxPooling layer and 67.67% when 

using AveragePooling. The results show that increasing the depth or in this case adding layers and the 

number of kernels in the CNN model does not necessarily improve the performance of Mel-

Spectrogram-based ALS sound classification. This could be because the spectral features in the audio 

are not too complex and can be captured effectively by a simpler architecture. In addition, for the 

influence of the type of pooling layer used in the model, MaxPooling is slightly superior to 

AveragePooling in the S1 code scenario. It can be concluded that the strategy of using the type of 

pooling layer has a small influence when compared to the overall model complexity. The findings in 

this study strengthen that a simpler CNN model with moderate pooling is sufficient to achieve stable 

and high performance on the dataset used in this study. 

 
Figure 11 Performance of pooling layer 
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3) Multimodal Fusion Analysis 

The evaluation results of the model based on the number of features used in the dataset are presented 

in Table 5. It can be seen that using only audio features, the model achieved an accuracy of 80.33%, 

with precision, recall, and F1-score ranging from 79–80%. This indicates that the voice features 

represented in the Mel-Spectrogram form provide sufficient discriminatory information for the ALS 

classification task. However, some misclassification errors still occur, so the performance is still not 

perfect. In contrast, by combining features from audio and clinical data, the model can achieve 

excellent performance in all metrics (accuracy, precision, recall, and F1-score of 100%). This 

phenomenon indicates that the integration of multimodal data substantially improves the model's 

discriminatory ability. These results also provide several important insights. First, although audio 

features are informative, the incorporation of complementary clinical data allows the model to resolve 

ambiguities that cannot be captured by the voice signal alone. Therefore, the model is able to clearly 

produce class boundaries between ALS and HC that are indeed completely separable. Second, the 

performance gap between single and multimodal inputs underscores the superiority of multimodal 

approaches in distinguishing ALS patients. This also suggests that even when heterogeneous 

information sources describe the same object, these data synergistically improve the predictive 

performance of models with multiple variables/features to consider during training and prediction. 

Finally, the findings of this study emphasize that for practical applications, models need to combine 

clinical indicators with voice features or even other features that could provide highly reliable 

predictions for ALS detection. 

Table 5 Model performance using single and multimodal features 

Feature 

Performance 

Precision Recall 
F1 

Score 
Accuracy 

Audio  80,15% 80,33% 79,29% 80,33% 

Audio & Clinical 100% 100% 100% 100% 

 

Figure 12 presents the confusion matrix of the S1B model trained on audio features alone, while 

Figure 13 shows the confusion matrix of the same model trained on a combination of audio recordings 

and clinical data. These confusion matrices provide clearer insights into the misclassification patterns 

and the level of misprediction within each class. For the audio-only model, misclassification is clearly 

visible, with 12 ALS samples predicted as HC, and 36 HC samples misclassified as ALS. This 

indicates that while the Mel-Spectrogram feature captures useful discriminatory patterns for model 

training, the model still experiences ambiguity in distinguishing between ALS and HC. This is likely 

due to overlapping voice characteristics between some ALS patients and healthy individuals. In 

contrast, the model trained on multimodal data achieved perfect classification, with all ALS and HC 

samples correctly predicted. This demonstrates that integrating clinical features with audio signals 

provides complementary information, resolving ambiguity and significantly improving the model's 

ability to distinguish between ALS patients and healthy individuals. These results highlight that the 

advantage of a training approach using multimodal data in ALS detection (heterogeneous data 

sources) can produce fully separable class boundaries and maximize the predictive performance of a 

model. 
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Figure 12 Confusion Matrix of the S1B model 

using audio features only 

Figure 13 Confusion Matrix of the S1B model 

using a combination of audio and clinical 

records 

 
Figure 14 Loss and accuracy curves of the multimodal model on Fold 4 

The multimodal model exhibits stable convergence across training epochs, as shown in Figure 14. The 

left figure illustrates the training loss, and the right figure shows its accuracy for Fold 4. This is 

because Fold 4 is the fold that yields the best model performance. As can be seen, the training and 

validation loss curves decrease rapidly and stabilize near zero after about ten epochs. This indicates 

effective learning without any indication of overfitting. Similarly, the accuracy curve remains 

consistently high, approaching 100% accuracy throughout the training process. These results confirm 

that the multimodal data fusion approach (Mel-Spectrogram and clinical data) can effectively achieve 

excellent generalization performance across validation folds. However, it is also worth noting that this 

near-perfect accuracy can also be attributed to the influence of clinical features that are highly 

informative for ALS cases. Conversely, some clinical features are missing or uninformative for 

Healthy Controls (HC), as these particular indicators or features are unique to ALS patients. This 

imbalance in feature richness gives the model a more robust classification capability for ALS 

detection. 

 

5 Conclusion 

Based on the study results, the diagnosis of Amyotrophic Lateral Sclerosis (ALS) using a deep 

learning model is highly effective. Training and evaluation using CNNs show that performance is 

highly dependent on the architecture selection based on the number of layers, dropout, and training 

scenario. The best model accuracy on audio-only data reached 80.33% with a CNN with one 

convolutional layer, average pooling, and a dropout probability of 0.3. This indicates the importance 

of designing a robust CNN for speech-based ALS detection. Furthermore, when combined with 

clinical data, the model achieved 100% accuracy. The main scientific contribution of this study lies in 

the establishment of an ALS diagnostic framework using multimodal data, namely integrating non-

invasive speech biomarkers with clinical data, with results that significantly improve diagnostic 

accuracy. These findings confirm that while audio morphology provides valuable non-invasive 

biomarkers, integration with clinical data results in a more robust diagnostic system. However, 
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challenges remain, particularly the limited number of healthy controls and the missing clinical 

features that are unique to ALS patients. Future research recommendations include expanding the size 

and balance of datasets, improving the comprehensiveness of clinical data, particularly for healthy 

patients, and exploring other, more sophisticated deep learning architectures. These architectures 

include attention-based models or transformer/transfer learning models validated using real-world 

data. This is expected to result in systems developed for ALS diagnostics that are more scalable and 

practical, and integrate explainable AI models to ensure the interpretability of diagnostic decisions. 
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