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Abstrak

MIT-BIH Polysomnography Database (SLPDB) merupakan tolok ukur yang luas digunakan dalam
pengembangan metode otomatis untuk deteksi gangguan tidur dan klasifikasi tahapan tidur. Penelitian
ini menyajikan Systematic Literature Review terhadap 35 artikel yang memanfaatkan SLPDB, dengan
menelaah fokus penelitian, penggunaan jenis sinyal, dan pendekatan komputasional yang diterapkan.
Lima kategori metodologi utama berhasil diidentifikasi, yaitu Deteksi Apnea Tidur, Sleep Staging,
Peningkatan Pemrosesan Sinyal, Metode Multichannel Fusion, serta Interpretable Al, dengan dua
kategori pertama menjadi yang paling dominan. Empat kelompok sinyal fisiologis—EEG, ECG,
respirasi, dan multikanal—menjadi dasar pengembangan model, di mana EEG umum digunakan
untuk sleep staging dan ECG untuk deteksi apnea. Pendekatan deep learning, khususnya CNN,
LSTM, dan model hibrida, merupakan metode yang paling banyak digunakan. Rentang akurasi model
bervariasi antara 78% hingga lebih dari 99%, dipengaruhi oleh jenis sinyal dan strategi pemodelan.
Ke depan, penelitian perlu memprioritaskan pengembangan model hibrida yang lebih dapat
diinterpretasikan serta validasi klinis yang lebih luas guna meningkatkan reprodusibilitas dan kesiapan
implementasi.

Kata kunci: analisis sinyal biomedis, machine learning, MIT-BIH polysomnography, sleep apnea,
systematic review
Abstract

The MIT-BIH Polysomnography Database (SLPDB) is a widely adopted benchmark for the
development of automated methods for sleep disorder detection and sleep stage classification. This
study presents a Systematic Literature Review of 35 articles that utilize the SLPDB, examining
research focus areas, types of physiological signals employed, and the computational approaches
applied. Five major methodological categories were identified: Sleep Apnea Detection, Sleep Staging,
Signal Processing Enhancement, Multichannel Fusion Methods, and Interpretable Artificial
Intelligence, with the first two categories being the most dominant. Four groups of physiological
signals—EEG, ECG, respiratory signals, and multichannel data—form the basis for model
development, where EEG is predominantly used for sleep staging and ECG for sleep apnea detection.
Deep learning approaches, particularly CNNs, LSTMs, and hybrid models, are the most frequently
employed techniques. Reported model accuracies range from 78% to over 99%, depending on the
signal modality and modeling strategy. Future research should prioritize the development of more
interpretable hybrid models and broader clinical validation to enhance reproducibility and
implementation readiness.

Keywords: biomedical signal analysis, machine learning, MIT-BIH polysomnography, sleep apnea,
systematic review
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1 Pendahuluan

Dalam dekade terakhir, gangguan tidur seperti Sleep Apnea menjadi salah satu tantangan
kesehatan masyarakat yang semakin mendapat perhatian, karena dapat memicu komplikasi
kardiovaskular, metabolik, dan neurologis. Salah satu standar diagnostik yang digunakan adalah
pemeriksaan Polysomnography (PSG) yang mencatat berbagai sinyal fisiologis selama tidur, seperti
elektroensefalogram (EEG), elektrokardiogram (ECG), gerakan otot (EMG), respirasi, dan saturasi
oksigen [1]. Namun, prosedur PSG tradisional memerlukan banyak sensor, biaya tinggi, dan
memakan waktu serta menyebabkan ketidaknyamanan pada pasien, sehingga seringkali aksesnya
terbatas. Untuk mengatasi hambatan ini, penelitian di bidang sinyal biomedis tumbuh pesat dalam
mengembangkan metode otomatis dan berbasis data untuk deteksi dan klasifikasi gangguan tidur.

Salah satu basis data publik yang banyak digunakan adalah MIT-BIH Polysomnographic
Database, yang dirilis oleh PhysioNet dan mencakup rekaman multikanal selama tidur yang telah
dianotasi untuk tahap tidur dan kejadian apnea/hypopnea. [2] Basis data ini telah memungkinkan para
peneliti menerapkan teknik pengolahan sinyal dan learning machine untuk tujuan seperti klasifikasi
tahap tidur atau identifikasi episode apnea. Misalnya, [3] melakukan analisis detrended fluctuation
pada EEG dari database ini dan menunjukkan bahwa eksponen skala sinyal berbeda antar tahap tidur
dan kondisi apnea. Penggunaan basis data yang terbuka dan teranotasi seperti ini sangat penting untuk
kemajuan metodologi, replikasi penelitian, dan komparabilitas antar studi.

Meski demikian, terdapat berbagai permasalahan yang masih menghambat implementasi luas
metode-otomatis berbasis database PSG. Pertama, variabilitas dalam preprocessing data, ekstraksi
fitur, dan konfigurasi model menyebabkan heterogenitas hasil antar penelitian. Kedua, walau banyak
studi menerapkan machine learning atau deep learning, integrasi sinyal multikanal dan validasi
eksternal masih terbatas. Ketiga, sebagian besar studi menggunakan dataset yang relatif kecil dan
usang, sehingga generalisasi ke populasi luas masih dipertanyakan. All ini mengarahkan pada
kebutuhan untuk melakukan tinjauan sistematis terhadap pemanfaatan MIT-BIH Polysomnographic
Database: bagaimana dataset ini telah dipakai, pola metodologinya, kekuatan dan keterbatasannya,
serta arah penelitian ke depan.

Dengan mempertimbangkan latar belakang tersebut, penelitian ini bertujuan untuk melakukan
systematic review terhadap studi-studi yang menggunakan MIT-BIH Polysomnographic Database,
dengan fokus pada teknik analisis sinyal, pendekatan komputasional, dan aplikasi klinis yang
dihasilkan. Signifikansi penelitian ini terletak pada penyediaan gambaran komprehensif mengenai
pemanfaatan dataset ini—yang dapat menjadi landasan bagi peneliti selanjutnya dalam memilih
metodologi, memahami gap penelitian, serta merancang penelitian yang lebih baik dan terstandarisasi.

2 Tinjauan Literatur

Sle-CNN: a novel convolutional neural network for sleep stage classification [4]
memperkenalkan jaringan konvolusional efisien khusus untuk klasifikasi lima tahap tidur, dengan
menyematkan koefisien pelatihan pada kernel di lapisan awal dan menggunakan algoritma genetika
untuk desain arsitektur otomatis. Model tersebut menunjukkan bahwa struktur yang disederhanakan
namun teroptimasi dapat mencapai performa tinggi pada sinyal EEG tunggal. Kelebihan penelitian ini
adalah inovasi arsitektur dan optimasi genetika, tetapi kekurangannya adalah studi terbatas pada
sinyal tunggal dan kurang membahas integrasi sinyal multikanal atau validasi pasien-independen.
Dengan demikian, bagian yang belum dilakukan adalah penyelidikan sistematis terhadap pipeline pra-
pemrosesan dan penerapan arsitektur tersebut dalam konteks sinyal multikanal dan data eksternal

SelANet: decision-assisting selective sleep apnea detection based on confidence score (2023)
mengusulkan pendekatan deteksi apnea tidur menggunakan sinyal kombinasi (ECG dan SpO:) dengan
skor kepercayaan sebagai mekanisme seleksi untuk hanya memutuskan kejadian yang memiliki
tingkat keyakinan tinggi [5]. Ini merupakan langkah maju dalam menangani ketidakpastian model Al
dan memfokuskan pada hasil dengan kepercayaan tinggi, sehingga meningkatkan keandalan
keputusan. Namun, penelitian ini masih terbatas pada sinyal terbatas, belum secara mendalam
membandingkan berbagai skema fusi sinyal ataupun standarisasi pra-pemrosesan dan validasi
eksternal. Artikel Anda akan menyasar aspek fusi sinyal multikanal secara sistematis dan
mengusulkan standarisasi pipeline yang masih kurang dibahas di literatur.
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A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating
the Apnea-Hypopnea Index [6] menyajikan sistem berbasis satu-kanal ECG yang menggunakan
jaringan DSF-SANet + GRU untuk mengestimasi Indeks Apnea-Hipopnea (AHI) dengan performa
cukup baik (r = 0,87). Penelitian ini menekankan pentingnya metrik klinis AHI sebagai output, bukan
hanya Klasifikasi sederhana, yang membuatnya relevan secara klinis. Kekurangannya adalah
penggunaan hanya satu jenis sinyal (ECG), validasi terbatas (tidak secara luas diuji pada dataset lain
dengan konfigurasi berbeda), dan minimnya analisis terhadap proses pra-pemrosesan dan generalisasi
model. Dengan demikian, penelitian Anda akan memperluas dengan membandingkan berbagai sinyal
(EEG, ECG, respirasi) dan menguji validasi pasien-independen di dataset publik yang sama.

Advanced Data Framework for Sleep Medicine Applications: Machine Learning-Based
Detection of Sleep Apnea Events mengembangkan kerangka data untuk aplikasi medis tidur dengan
pendekatan pembelajaran mesin pada dataset publik, menyoroti potensi dan tantangan deteksi apnea
secara otomatis [7]. Artikel ini penting karena menekankan aspek kerangka data dan proses end-to-
end, namun masih belum secara konkret mengeksplorasi standar pra-pemrosesan, integrasi sinyal
multikanal, ataupun validasi eksternal secara rinci. Hal ini membuktikan bahwa kebutuhan untuk
pipeline yang dapat direproduksi dan standar masih terbuka

Wearable Sensors and Avrtificial Intelligence for Sleep Apnea Detection: A Systematic Review
(2025) melakukan tinjauan sistematis terhadap integrasi sensor wearable dan Al dalam deteksi
Obstructive Sleep Apnea (OSA) dengan hasil pooled accuracy ~0,89, sensitivity ~0,79, specificity
~0,95 [8]. Meskipun meta-analisis ini mencakup banyak studi, mayoritas masih menggunakan data
tertutup atau sinyal tunggal, dan hanya sedikit yang menerapkan validasi lintas-data secara pasien-
independen atau menyajikan metrik konsisten antar-studi. Ini menegaskan kebutuhan untuk
standarisasi metodologis dan laporan yang lebih transparan

Melalui penguraian masing-masing penelitian di atas, terlihat bahwa literatur terkini memang
telah membuat kemajuan signifikan dalam deteksi gangguan tidur dan klasifikasi tahap tidur, namun
secara konsisten belum menyediakan solusi standarisasi pipeline pra-pemrosesan, belum melakukan
studi komparatif strategi fusi sinyal multikanal secara sistematis, dan belum menguji generalisasi
model melalui validasi pasien-independen pada dataset publik yang sama. Artikel review ini bertujuan
untuk mengisi kekosongan tersebut dengan menerapkan pendekatan yang terstruktur. Studi ini
menyajikan analisis kritis terhadap literatur terbaru untuk menyintesis serta merumuskan rekomendasi
mengenai skema pra-pemrosesan yang paling umum dan efektif digunakan, termasuk perbandingan
teknis antar metode penyaringan (filtering) dan strategi segmentasi. Selanjutnya, artikel ini melakukan
pengelompokan dan perbandingan secara sistematis terhadap bukti-bukti penggunaan strategi fusi
sinyal multikanal dalam penelitian terdahulu. Sintesis atas temuan-temuan tersebut diharapkan dapat
menghasilkan rekomendasi pipeline yang lebih terstandar bagi penelitian mendatang yang berfokus
pada SLPDB, sehingga mampu mengatasi fragmentasi pendekatan yang masih terlihat dalam
penelitian saat ini.

3 Metode Penelitian

Penelitian ini menggunakan pendekatan systematic review yang berfokus pada identifikasi,
evaluasi, dan sintesis studi terkini (2015-2025) yang memanfaatkan MIT-BIH Polysomnographic
Database (MIT-BIH-PSG) dalam pengembangan model prediksi gangguan tidur, terutama apnea tidur
(sleep apnea) dan gangguan pernapasan terkait tidur. Penggunaan rentang waktu 2015-2025 dipilih
karena periode ini merepresentasikan perkembangan paling signifikan dalam pemanfaatan MIT-BIH
Polysomnographic Database untuk analisis gangguan tidur berbasis teknologi. Dalam satu dekade
terakhir, terjadi kemajuan besar pada metode machine learning, deep learning, serta teknik analisis
sinyal biomedis, sehingga studi-studi yang terbit pada periode ini lebih relevan dengan pendekatan
modern dan aplikasi Klinis terkini. Selain itu, dataset MIT-BIH-PSG mulai banyak digunakan kembali
dalam penelitian karena meningkatnya kebutuhan model otomatis untuk deteksi apnea tidur dan
gangguan pernapasan. Dengan demikian, periode 2015-2025 memungkinkan penelitian ini
menangkap tren mutakhir, kesenjangan penelitian, serta evolusi metode yang berkontribusi terhadap
pengembangan sistem prediksi gangguan tidur berbasis data PSG. Pendekatan penelitian mengikuti
pedoman PRISMA 2020 [9] untuk memastikan transparansi dan reprodusibilitas proses tinjauan
seperti terlihat pada Gambar 1.
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Gambar 1 Metode screening PRISMA pada MIT-BIH polysomnography

Sumber data utama berasal dari publikasi ilmiah peer-reviewed yang tersedia secara open access
dan terindeks Scopus minimal Q5. Basis data pencarian mencakup IEEE Xplore, PubMed Central,
ScienceDirect, dan MDPI dengan kombinasi kata kunci: “MIT-BIH Polysomnographic Database”,
“sleep apnea prediction”, “polysomnography”, “EEG ECG fusion”, dan “deep learning sleep
disorder”. Proses penapisan (screening) dilakukan berdasarkan kriteria inklusi dan eksklusi yang
dijabarkan pada Tabel 1 Kriteria Inklusi dan Eksklusi. Secara umum, kriteria inklusi mencakup
penelitian yang menggunakan MIT-BIH-PSG sebagai dataset utama atau pembanding, menerapkan
metode pembelajaran mesin atau deep learning, serta melaporkan metrik performansi seperti akurasi,
sensitivitas, atau AUC. Sementara itu, artikel yang tidak menyebutkan MIT-BIH-PSG secara eksplisit
atau tidak menyajikan hasil eksperimental dikeluarkan dari analisis.

Tabel 1 Kirteria inklusi dan eksklusi

Kriteria Inklusi Kriteria Eksklusi
Artikel menggunakan MIT-BIH . .
Polysomnographic Database (SLPDB) secara Artikel tidak menggunakan MIT-BIH SLPDB
lanasun secara langsung

gsung
Artikel memiliki data lengkap atau metode yang Data tidak lengkap atau metode tidak dapat
dapat direplikasi direplikasi
Fokus penelitian terkait deteksi atau klasifikasi Fokus tidak terkait deteksi atau klasifikasi
gangguan tidur gangguan tidur
Artikel bukan duplikasi (unik) Studi duplikasi
Artikel ilmiah, relevan dengan domain tidur, Artikel ilmiah, relevan dengan domain tidur,
dan tersedia secara open-access dan tersedia secara open-access

Setiap publikasi yang memenuhi kriteria dievaluasi secara independen oleh dua penelaah. Data
yang diekstraksi meliputi jenis sinyal (EEG, ECG, respirasi), teknik pra-pemrosesan (filtering,
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segmentasi, normalisasi), arsitektur model (CNN, RNN, hybrid), metode validasi (cross-validation,
patient-independent), serta performansi model dalam mendeteksi apnea atau gangguan tidur lainnya.
Langkah ini merujuk pada pendekatan ekstraksi sistematis sebagaimana digunakan oleh Fan et al.
(2024) [4] dan Paul et al. (2024) [10] yang meninjau pipeline analisis sinyal tidur menggunakan deep
learning secara terstruktur.

Analisis dilakukan secara naratif dengan membandingkan hasil antar-studi untuk menemukan
pola umum, misalnya pengaruh jenis sinyal terhadap performansi model atau efektivitas fusi
multimodal dibandingkan sinyal tunggal. Selain itu, dilakukan penilaian metodologis terhadap
kualitas validasi dan keterbukaan kode yang digunakan. Studi seperti Zhang et al. (2023) [4] dan
SelANet (BMC Med. Inform. Decis. Mak., 2023) [5] dijadikan acuan metodologi karena
menampilkan penggunaan data publik secara transparan dan pendekatan berbasis keyakinan prediktif.

Fokus utama penelitian ini adalah mengidentifikasi celah (gap) dalam pemanfaatan MIT-BIH-
PSG, khususnya kurangnya standarisasi pipeline pra-pemrosesan dan belum adanya konsensus
terhadap validasi pasien-independen untuk memastikan generalisasi model. Berdasarkan temuan dari
literatur yang relevan, penelitian ini bertujuan merumuskan rekomendasi metodologis terkait
penggunaan dataset MIT-BIH-PSG secara lebih optimal untuk prediksi gangguan tidur berbasis
kecerdasan buatan.

4  Hasil dan Pembahasan

Penelitian periode 2015-2025 menunjukkan variasi signifikan pada preprocessing, filtering, dan
segmentasi yang memengaruhi akurasi model berbasis MIT-BIH PSG. Mayoritas studi menggunakan
baseline filtering berupa bandpass—notch, namun pendekatan adaptive filtering seperti wavelet soft-
thresholding atau EMD-DWT terbukti lebih robust terhadap noise, terutama pada sinyal ECG dan
respirasi. Dari sisi preprocessing, metode derivatif [11] dan annotation filtering WFDB [12] menjadi
teknik yang paling konsisten meningkatkan kualitas data dan layak distandardisasi dalam pipeline.
Perbedaan segmentasi juga berpengaruh: 30-detik tetap paling efektif dan selaras dengan standar
AASM, sedangkan 60-detik lebih stabil untuk analisis HRV atau apnea berbasis ECG, dan segmentasi
event-based hanya unggul untuk prediksi dini kejadian (misalnya OSA). Secara keseluruhan,
kombinasi filtering konvensional + koreksi anotasi + segmentasi 30 detik merupakan komponen
pipeline yang paling konsisten, sedangkan metode lanjutan seperti recurrence plots, CRC
spectrogram, atau adaptive filtering bersifat opsional untuk peningkatan performa pada kasus tertentu.

4.1 Hasil Penelitian

Berdasarkan analisis terhadap 35 artikel open-access bereputasi Q1-Q5 yang menggunakan
MIT-BIH Polysomnographic Database (SLPDB) selama periode 2015-2025, diperoleh bahwa
dataset ini paling sering digunakan untuk deteksi sleep apnea, klasifikasi tahapan tidur, dan analisis
sinyal fisiologis EEG/ECG. Rangkuman hasil utama tiap studi ditunjukkan pada Tabel 2.

Tabel 2 Ringkasan temuan penelitian yang menggunakan MIT-BIH polysomnographic
database (2015-2025)

ISSN:2302-8149
e-ISSN:2540-9719

No  Peneliti & Tahun Metode Tujuan / Task Hasil Utama Keunikan

1  Barnes et al. (2022, CNN (EEG Deteksi  sleep Akurasi  >92%, Fokus pada
PLOS ONE)[13] tunggal) apnea sensitivitas tinggi  explainability CNN

2 Guyot et al. (2025, Analisis ECG Deteksi apnea Akurasi 91% Algoritme  ECG-only
PLOS ONE) [14] jangka panjang untuk mendeteksi apnea

3 Gurrala, Ensemble Deteksi  Sleep Akurasi  deteksi Fokus pada ekstraksi
Vijayakumar Bagged Tree Apnea & apnea 95.9% pada fitur EEG untuk
Yarlagadda, (Machine Klasifikasi 18 rekaman membedakan tahap tidur
Padmasai Learning) Tahap Tidur (10.197 epoch) dan mendukung
Koppireddi, dari sinyal EEG diagnosis klinis.
Padmaraju[15] MIT-BIH PSG

4 Lucas et al. (2022)

Hybrid Machine

Deteksi kantuk

Akurasi 88%

Fokus pada drowsiness

[16] Learning menggunakan data PSG
5 Guillet et al. (2021, Analisis ritme Analisis ritme Koherensi tinggi Pendekatan statistik
Frontiers AM&S) koherensi tidur antar kanal EEG nonlinier
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[17] dan EMG

6 Singh et al. (2023, Review metode Kajian fitur MIT-BIH sering Review komprehensif
Frontiers in Al) [18] EEG digunakan untuk DL untuk EEG

benchmarking

7 Suboh et al. (2022, Analisis turunan Preprocessing Perbaikan noise Feature engineering
Frontiers Public  sinyal 18-22% pada domain turunan
Health) [11]

8 Padovano et al. DL + Kilasifikasi tidur ~ Akurasi 90% Kombinasi recurrence +
(2025, Applied Recurrence DL
Sciences) [19]

9 Paul et al. (2024, Model linier Sleep stage Akurasi 89% Model interpretable
Sensors) [10] segmental classification berbasis piecewise

10 Dong et al. (2025, CNN detektor Deteksi  event F1-score 0.91 Validasi lintas dataset
ScienceDirect) [20] EEG (MIT-BIH &

PhysioNet)

11 Benké et al. (2022, Model-free Deteksi  event Deteksi >90% Tanpa model training
Scientific Reports) detection fisiologis tepat waktu tradisional
[21]

12 Frontiers Group DL & analisis Sleep staging Rata-rata akurasi Benchmark lintas model
(2015) [22] sinyal 85-92%

13 F1000Research Machine Deteksi apnea Akurasi 88% Open-peer review
(2022) [23] Learning hibrida meningkatkan

transparansi

14 Que, Yinging CNN untuk fitur  Klasifikasi Akurasi mencapai Sleep staging tanpa PSG
Jiang, Pengyi respirasi, tahap tidur 81,96% pada multikanal, hanya
Zhang, Tianyi Word2Vec berbasis sinyal MIT-BIH PSG. memakai respirasi  +
Cheng, Yunzhang untuk data fisik, respirasi dan metadata dengan
[24] dan transformer informasi fisik arsitektur hybrid CNN-

untuk pasien. Transformer.
penggabungan
fitur.
15 S. Rashidiand B. M. Model Deteksi Tidur Akurasi  99.93% Kombinasi unik
Asl[25] Ensemble (2 kelas), stacking & bagging,
Stacking + 97.14%-85.64% akurasi tinggi dengan
Bagging (3-6 kelas) sinyal single-channel
16 J. Fanetal., [26] EDR Estimation Estimasi  laju  Akurasi QRS Prosesor ultra-low
Processor (QRS respirasi (EDR) 99.18%, MAE power 55 nm dengan
+ Adaptive & deteksi QRS EDR 0.73, teknik refractory period
Threshold) ultra-low power  konsumsi  daya refreshing & adaptive
sangat rendah EDR threshold
(354 nW)

17  W. Yang, J. Fan, X. LSTM Klasifikasi Akurasi total Menggunakan anotasi
Wang, and Q. Liao, (Respiration event 81.6%); recall 30-detik MIT-BIH PSG
[27] Signal) pernapasan 90.0% (norm), tanpa start-stop event;

(norm, apnea, 87.1% (apnea), hanya sinyal respirasi
hypopnea) 83.2% (hypopnea) sebagai input

18 0. K. Utomo, N. WELM + PSO Sleep stage Akurasi 78.78% Mengatasi
Surantha, S. M. Isa, (ECG signal) classification (REM-NREM- ketidakseimbangan data
and B. Soewito [28] pada dataset Wake) dan dengan Weighted ELM

imbalanced 73.09% (Light- + seleksi fitur PSO pada
Deep—-REM- MIT-BIH PSG
Wake)

19 U. Budak, V. Bajaj, Multi-block Deteksi kantuk Akurasi rata-rata Tiga blok fitur (statistik,
Y. Akbulut, O. EEG + LSTM (driver 94.31% (10-fold deep CNN features,
Atila, and A. Sengur (Raw EEG, drowsiness Cv) TQWT sub-bands)
[29] Spectrogram, detection) digabung dengan LSTM

TQWT) + majority voting
20  Adami, Ali EMD + DWT Estimasi MAPE sangat Menggabungkan multi-

Boostani, Reza

ekstraksi sinyal

Breathing Rate

rendah (3.6-3.9%

sinyal dengan state-
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Marzbanrad, Faezeh  respirasi + EKF (BR) otomatis ECG; 6.0% PPG; vector fusion; tetap
Charlton, Peter H. dengan SQl yang robust 5.0% BP) pada akurat hingga 0 dB
[30] pada terhadap noise MIT-BIH & noise

ECG/PPG/BP BIDMC

21 J. of Healthcare Deep Learning Deteksi aritmia Akurasi tinggi Kombinasi deep

Engineering [31] (Wavelet + otomatis pada dataset MIT- learning + wavelet soft-
Adaptive  Soft (arrhythmia BIH (berbasis  thresholding untuk
Thresholding, detection) deep learning, denoising adaptif dan
MIT-BIH tidak disebutkan deteksi aritmia presisi
Arrhythmia) angka spesifik) tinggi

22 Khalaf, Akram Annotation Standarisasi Menemukan 71% Menghapus  non-beat
Jaddoa Filtering jumlah beat & penelitian annotations secara
Mohammed, Samir Function koreksi anotasi memakai jumlah otomatis untuk semua
Jasim [12] (MATLAB- MIT-BIH untuk beat salah; fungsi database PhysioNet;

WFDB) evaluasi menghasilkan meningkatkan validitas
QRS/ML hitungan beat evaluasi & pelatihan
yang benar ML

23 Que, Yinging CNN + Ekstraksi  fitur Akurasi 81,96% Hanya Menggunakan
Jiang, Pengyi Word2Vec  + sinyal pada  MIT-BIH sinyal pernapasan +
Zhang, Tianyi Transformer pernapasan & PSG metadata tanpa PSG
Cheng, Yunzhang (Respiratory- data fisik untuk lengkap; arsitektur
[24] based Sleep klasifikasi tahap hybrid CNN-

Staging) tidur Word2Vec—
Transformer.

24  Belakhdar, Ibtissem  Spektral EEG (1 Deteksi kantuk Akurasi ~88,8%, Menggunakan hanya 1
Kaaniche, Walid Hz Sub-bands + berbasis EEG waktu proses 0,2 s kanal diferensial & fitur
Djemal, Ridha Individual per epoch alpha tunggal untuk
Ouni, Bouraoui [32]  Alpha mengurangi variabilitas

Frequency) antar-individu dan
cocok untuk
implementasi embedded
ARM.

25 Wei, Ran DNN (Stacked Kilasifikasi Akurasi 77%, Menggantikan EEG
Zhang, Xinghua Autoencoder + tahap tidur Cohen’s kappa dengan ECG untuk
Wang, Jinhai 11 Fitur ECG) (Wake-REM- 0.56 monitoring  tidur  di
Dang, Xin [33] NREM) rumah; validasi cross-

berbasis sinyal subject dari 18 PSG
ECG MIT-BIH.

26  Taghizadegan, RP-CNNs Prediksi dini  Akurasi  hingga Menggunakan
Yashar (ResNet-18 & OSA  30-120 90.72% & AUC Recurrence Plots untuk
Jafarnia Dabanloo, ShuffleNet ~ + detik sebelum 0.90 pada MIT- representasi  dinamika
Nader WMV Fusion) kejadian BIH & Dublin sinyal PSG dan fusi
Maghooli, Keivan Sleep Apnea Weighted Majority
Sheikhani, Ali [34] Voting untuk

meningkatkan performa
prediksi dibanding studi
sebelumnya.

27 Onyema, Edeh Panel Menganalisis Ditemukan Pendekatan dua-dimensi
Michael Cointegration + hubungan hubungan kausal jantung-otak  dengan
Ahanger, Tariq FMOLS/DOLS jangka panjang bilateral ECG- pemodelan konvergensi
Ahamed + Panel Granger & arah BP, ECG-EEG, jangka panjang & arah
Samir, Ghouali Causality kausalitas antar EEG-BP serta kausalitas Granger
Shrivastava, Manish sinyal fisiologis pengaruh untuk mendukung
Maheshwari, (ECG, EEG, signifikan keputusan Klinis.
Manish BP, RESP) pada hemodinamik-

Seghir, Guellil pasien sleep respiratori
Mohammed apnea terhadap
Krah, Daniel [35] ECG/EEG
28  Atianashie, Miracle  CNN  (Single- Klasifikasi Akurasi 92% pada  Arsitektur  single-level
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A channel EEG) + otomatis MIT-BIH PSG & CNN vyang ringan &
Armabh, Ellisha Raspberry ~ Pi gangguan tidur CAP; tanpa perlu dapat berjalan di
D’ Archimedes Deployment (apnea & feature Raspberry  Pi  untuk
Mohammed, Nasiru insomnia) extraction/selectio  deteksi gangguan tidur
[36] menggunakan n manual secara real-time.
CNN dan GUI
berbasis  real-
time
29 Wang, Wei Bo Hybrid HRV + Sleep  staging Akurasi  tinggi: Memperkenalkan sinyal
Qin, Dimei R-Peak Features otomatis (2-5 91.34% (2-stage), R-Peak sebagai fitur
Fang, Yu + GBDT level) 89.56% (3-stage), baru yang menangkap
Zhou, Chao menggunakan 87.15% (4-stage), esensi ECG & bekerja
Zheng, Yongkang fitur hibrida 82.02% (5-stage); stabil di dua database
[37] time—freq— kappa hingga 0.77 (UCDDB & MIT-BIH).
nonlinear  dari
HRV & RP
30 Deep learninginthe CRC Klasifikasi Akurasi 75.4% (4- Menghasilkan performa
cross-time frequency  Spectrogram + tahap tidur stage), 81.6% (3- terbaik berbasis non-
domain for sleep CNN + SVM berbasis ECG stage), 85.1% (2- EEG dengan CRC time—
staging from a Fusion (ECG- tunggal melalui class); kappa frequency features &
single-lead only Sleep beat detection, hingga 0.68 dataset sangat besar
electrocardiogram Staging) cardiorespirator tanpa anotasi manual.
[38] y coupling
(coherence &
Cross-
spectrogram),
CNN & SVM
31  Sharma, Manish BWFB + Hjorth Sleep stage Akurasi 83.2%, Pioneering work pada
Makwana, Paresh Features + classification Kappa 0.7345 (5- WSC (dataset sangat
Chad, Rajesh Singh  Ensemble otomatis stage), konsisten besar & beragam
Acharya, U. Classifier ~ (2- berbasis dua & kompetitif di 5 gangguan tidur), model
Rajendra [39] channel EEG) kanal EEG database publik ringan untuk perangkat
dengan Hjorth rumah & wearable.
parameters dari
subband
biorthogonal
wavelet  filter
bank
31 Peng, Chun Cheng Transfer Prediksi Akurasi  86.63%, Menunjukkan  potensi
Kou, Chu Yun [40] Learning kejadian sensitivitas kuat deep learning-
AlexNet (ECG- Obstructive 92.20%, presisi transfer learning untuk
based OSA  Sleep Apnea  90.55%, AUC deteksi OSA berbasis
Prediction) dari sinyal ECG 91.95% ECG yang lebih efisien
menggunakan & mudah
transfer learning diimplementasikan.
berbasis
AlexNet
32  Chatterjee, Arnab ADASYN untuk meningkatkan Subspace KNN kombinasi  ADASYN
Jana, Nanda Dulal oversampling + akurasi memberikan dan Tomek-links untuk
[41] Tomek-links klasifikasi jenis- akurasi tertinggi penyeimbangan data
untuk jenis event sleep  yaitu 98.92% serta evaluasi lintas dua
pembersihan apnea pada data (MIT-BIH) dan database sehingga hasil
sampel, dengan EEG yang tidak 81.39% lebih generalizable.
classifier seimbang (UCDDB)

Bagged Trees,
Subspace KNN,

KNN, dan
Cubic SVM
pada MIT-BIH
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dan UCDDB

33  Rykhalska, Anna Fitur HRV & Kilasifikasi Akurasi  hingga HRV paling informatif;
Kostiantynivna EEG + norm-apnea— 99.9% (HRV), kombinasi ECG-EEG
Ivanko, Kateryna KNN/SVM/Bag hypopnea EEG hanya 91.9% tetap unggul namun
Olehivna ging pada mirip HRV saja
Ivanushkina, Apnea-ECG &

Nataliia Heorhiivna ~ MIT-BIH
Ivanko, Dmytro
Olehovych [42]

34 SleepECG: a Python Sleep  staging Mengembangka Akurasi 83% Open-source, cepat (C-
package for sleep berbasis detak n pipeline (Wake—Sleep) dan extension), dapat dilatih
staging based on jantung otomatis untuk  75% ulang, dan mendukung
heart rate [43] menggunakan klasifikasi (W/REM/NREM) ribuan data PSG secara

HRYV, heartbeat Wake/REM/NR pada 1000 data uji reproducible
detection Pan— EM tanpa EEG

Tompkins,

ekstraksi 33

fitur HRV +

RNN classifier

(SleepECG)

35 Detection of Sleep Ekstraksi  fitur Deteksi apnea &  Akurasi deteksi Fokus pada EEG saja
Apnea based onthe  EEG dari PSG + identifikasi apnea mencapai tanpa semua PSG; fitur
analysis of sleep Ensemble tahap tidur 95.9% pada baru EEG membantu
stages data using Bagged Tree berbasis sinyal 10.197 epoch diagnosis klinis
single channel EEG  pada dataset EEG
[15] PhysioNet

(MIT-BIH)
4.2  Fokus Penelitan

Terdapat banyak pendekatan pemodelan yang digunakan dalam analisis sinyal tidur berbasis
MIT-BIH SLPDB. Berdasarkan 35 literatur yang dianalisis, peneliti menemukan lima kategori
metodologi utama, Sleep Apnea Detection, seperti pada literatur [13], [11], [19], [20], [22], [24], [25],
[26], [29], [12], [35], [37], [39], [41], Sleep Staging, seperti pada literatur [14], [16], [18], [10], [21],
[271, [30], [31], [32], [36], [40], Signal Processing Improvement, seperti pada literatur [15], [23], [25],
[28], [33], Multichannel Fusion Methods, seperti pada literatur [34], [38], [42], [43], Interpretable /
Explainable Al, seperti pada literatur [15].

31.4%

Sleep Staging

Distribusi Metodologi dalam 35 Literatur MIT-BIH SLPDB

Sleep Apnea Detection

11.4%

‘ Interpretable / Explainable Al

Multichannel Fusion

Signal Pracessing Improvement

Gambar 2 Distribusi Metodolog Literatur
Pada Gambar 2, kategori yang paling banyak digunakan adalah Sleep Apnea Detection dengan
persentase 40%, diikuti oleh Sleep Staging sebesar 31%. Kategori lainnya yaitu Signal Processing
Improvement, Multichannel Fusion, dan Interpretable Al masing-masing memiliki persentase 14%,
11%, dan 4%. Dominasi kategori Sleep Apnea Detection disebabkan oleh beberapa keunggulan

316

http.//sistemasi.ftik.unisi.ac.id



Sistemasi: Jurnal Sistem Informasi ISSN:2302-8149
Volume 15, Nomor 1, 2026: 308-320 e-ISSN:2540-9719

utama. Task deteksi apnea memiliki pola fisiologis yang lebih jelas, seperti henti napas pada sinyal
respirasi atau variasi HRV pada ECG, sehingga model machine learning maupun deep learning dapat
mencapai akurasi sangat tinggi, bahkan lebih dari 95%. Selain itu, jenis sinyal yang digunakan—
seperti ECG, respirasi, dan SpO.—Iebih stabil dan tidak memerlukan segmentasi kompleks seperti
yang dibutuhkan pada sleep staging berbasis EEG. Relevansi klinis yang tinggi juga menjadi faktor
penting, karena deteksi apnea sangat diperlukan dalam pengembangan sistem diagnosis dini dan
perangkat wearable untuk pemantauan tidur. Lebih jauh lagi, efektivitas model deep learning berbasis
CNN, LSTM, dan arsitektur hybrid dalam mengenali pola apnea menjadikan kategori ini berkembang
paling cepat secara metodologis.

Selain variasi metodologi, penelitian-penelitian yang menggunakan MIT-BIH SLPDB juga
menunjukkan pola yang beragam dalam pemanfaatan jenis sinyal fisiologis. Berdasarkan 35 literatur
yang dianalisis, peneliti menemukan bahwa empat kelompok sinyal utama—EEG, ECG, respirasi,
dan kombinasi multikanal—menjadi dasar utama dalam pengembangan model analisis tidur.
Penggunaan sinyal EEG banyak ditemukan pada studi yang berfokus pada sleep staging dan deteksi
kantuk, sebagaimana terlihat pada literatur [13], [15], [17], [18], [28], [31], [32], [39], [33], [42],
[36], [41]. Sementara itu, sinyal ECG merupakan salah satu sinyal yang paling banyak dimanfaatkan,
terutama dalam sleep apnea detection, seperti pada literatur [11], [12], [14], [20], [24], [25], [26],
[29], [30], [33], [34], [37], [40]. Pada sisi lain, beberapa penelitian memanfaatkan sinyal respirasi
sebagai dasar utama analisis, seperti ditunjukkan dalam literatur [19], [25], [26], [29], [31], [34],
[33], [35], [38], terutama untuk tugas deteksi apnea dan respiratory-based sleep staging. Adapun
pendekatan multikanal, yang menggabungkan beberapa sinyal seperti EEG, ECG, EMG, dan
respirasi, ditemukan pada literatur [34], [38], [42], [43], [28], [17] dan menunjukkan performa yang
lebih komprehensif dalam menangkap dinamika tidur yang kompleks. Distribusi penggunaan data
dapat terlihat pada gambar 3.

Distribusi Penggunaan Jenis Sinyal dalam 35 Literatur MIT-BIH SLPDB

EEG

30.0%

ECG
32.5%

Multikanal

Respirasi

Gambar 3 Distribusi penggunaan sinyal MIT-BIH database

4.3  Sintesis Umum

Secara keseluruhan, 35 penelitian yang dianalisis menunjukkan variasi performa model yang
signifikan, dengan akurasi model berkisar antara 78% hingga >99%. Akurasi ini sangat dipengaruhi
oleh jenis tugas (task)—di mana deteksi gangguan tidur (misalnya, Sleep Apnea) cenderung mencapai
akurasi tertinggi (>95%)—serta jenis sinyal yang digunakan (EEG, ECG, atau multimodal). Meskipun
pendekatan Deep Learning (DL) masih menjadi metodologi yang dominan, terlihat adanya
peningkatan perhatian terhadap model hibrida (hybrid) yang mengombinasikan kekuatan DL dengan
fleksibilitas model klasik (interpretable) untuk meningkatkan transparansi dan kinerja. Selain itu,
MIT-BIH SLPDB terus terbukti sebagai dataset yang konsisten dan relevan sebagai tolok ukur
(benchmark) utama yang valid untuk membandingkan performa lintas pendekatan pemodelan.
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5 Kesimpulan

Analisis terhadap 35 studi berbasis MIT-BIH SLPDB menunjukkan bahwa penelitian deteksi dan
klasifikasi gangguan tidur terus berkembang melalui penerapan lima kategori metodologi utama,
yakni Sleep Apnea Detection, Sleep Staging, Signal Processing Improvement, Multichannel Fusion
Methods, dan Interpretable/Explainable Al, dengan dua kategori pertama menjadi fokus dominan.
Variasi metodologi ini sejalan dengan pola pemanfaatan empat kelompok sinyal fisiologis—EEG,
ECG, respirasi, dan multikanal—di mana EEG paling banyak digunakan untuk sleep staging, ECG
untuk deteksi apnea, respirasi sebagai alternatif efektif untuk analisis berbasis laju napas, dan
multikanal untuk tugas yang menuntut integrasi informasi fisiologis yang lebih luas. Pendekatan deep
learning, khususnya CNN, LSTM, dan arsitektur hibrida, merupakan metodologi yang paling banyak
diadopsi, dengan performa model yang dilaporkan berada pada rentang akurasi 78% hingga lebih dari
99%, bergantung pada jenis sinyal, teknik pra-pemrosesan, dan konfigurasi model. Penelitian ini
memberikan kontribusi melalui pemetaan sistematis yang menghubungkan metodologi, penggunaan
sinyal, dan hasil kinerja dalam satu kerangka analitis yang komprehensif, sekaligus mengidentifikasi
kesenjangan pada aspek interpretabilitas dan variasi pipeline pemrosesan. Ke depan, penelitian perlu
diarahkan pada pengembangan model hibrida yang lebih interpretable, pemanfaatan sinyal minimalis
untuk mendukung perangkat wearable, eksplorasi multimodal fusion berbasis arsitektur modern, serta
validasi klinis yang lebih luas guna meningkatkan reprodusibilitas dan kesiapan implementasi.
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