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Abstrak 
MIT-BIH Polysomnography Database (SLPDB) merupakan tolok ukur yang luas digunakan dalam 

pengembangan metode otomatis untuk deteksi gangguan tidur dan klasifikasi tahapan tidur. Penelitian 

ini menyajikan Systematic Literature Review terhadap 35 artikel yang memanfaatkan SLPDB, dengan 

menelaah fokus penelitian, penggunaan jenis sinyal, dan pendekatan komputasional yang diterapkan. 

Lima kategori metodologi utama berhasil diidentifikasi, yaitu Deteksi Apnea Tidur, Sleep Staging, 

Peningkatan Pemrosesan Sinyal, Metode Multichannel Fusion, serta Interpretable AI, dengan dua 

kategori pertama menjadi yang paling dominan. Empat kelompok sinyal fisiologis—EEG, ECG, 

respirasi, dan multikanal—menjadi dasar pengembangan model, di mana EEG umum digunakan 

untuk sleep staging dan ECG untuk deteksi apnea. Pendekatan deep learning, khususnya CNN, 

LSTM, dan model hibrida, merupakan metode yang paling banyak digunakan. Rentang akurasi model 

bervariasi antara 78% hingga lebih dari 99%, dipengaruhi oleh jenis sinyal dan strategi pemodelan. 

Ke depan, penelitian perlu memprioritaskan pengembangan model hibrida yang lebih dapat 

diinterpretasikan serta validasi klinis yang lebih luas guna meningkatkan reprodusibilitas dan kesiapan 

implementasi. 

Kata kunci: analisis sinyal biomedis, machine learning, MIT-BIH polysomnography, sleep apnea, 

systematic review 

Abstract 
The MIT-BIH Polysomnography Database (SLPDB) is a widely adopted benchmark for the 

development of automated methods for sleep disorder detection and sleep stage classification. This 

study presents a Systematic Literature Review of 35 articles that utilize the SLPDB, examining 

research focus areas, types of physiological signals employed, and the computational approaches 

applied. Five major methodological categories were identified: Sleep Apnea Detection, Sleep Staging, 

Signal Processing Enhancement, Multichannel Fusion Methods, and Interpretable Artificial 

Intelligence, with the first two categories being the most dominant. Four groups of physiological 

signals—EEG, ECG, respiratory signals, and multichannel data—form the basis for model 

development, where EEG is predominantly used for sleep staging and ECG for sleep apnea detection. 

Deep learning approaches, particularly CNNs, LSTMs, and hybrid models, are the most frequently 

employed techniques. Reported model accuracies range from 78% to over 99%, depending on the 

signal modality and modeling strategy. Future research should prioritize the development of more 

interpretable hybrid models and broader clinical validation to enhance reproducibility and 

implementation readiness. 

Keywords: biomedical signal analysis, machine learning, MIT-BIH polysomnography, sleep apnea, 

systematic review 
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1 Pendahuluan 

Dalam dekade terakhir, gangguan tidur seperti Sleep Apnea menjadi salah satu tantangan 

kesehatan masyarakat yang semakin mendapat perhatian, karena dapat memicu komplikasi 

kardiovaskular, metabolik, dan neurologis. Salah satu standar diagnostik yang digunakan adalah 

pemeriksaan Polysomnography (PSG) yang mencatat berbagai sinyal fisiologis selama tidur, seperti 

elektroensefalogram (EEG), elektrokardiogram (ECG), gerakan otot (EMG), respirasi, dan saturasi 

oksigen [1]. Namun, prosedur PSG tradisional memerlukan banyak sensor, biaya tinggi, dan 

memakan waktu serta menyebabkan ketidaknyamanan pada pasien, sehingga seringkali aksesnya 

terbatas. Untuk mengatasi hambatan ini, penelitian di bidang sinyal biomedis tumbuh pesat dalam 

mengembangkan metode otomatis dan berbasis data untuk deteksi dan klasifikasi gangguan tidur. 

Salah satu basis data publik yang banyak digunakan adalah MIT-BIH Polysomnographic 

Database, yang dirilis oleh PhysioNet dan mencakup rekaman multikanal selama tidur yang telah 

dianotasi untuk tahap tidur dan kejadian apnea/hypopnea. [2] Basis data ini telah memungkinkan para 

peneliti menerapkan teknik pengolahan sinyal dan learning machine untuk tujuan seperti klasifikasi 

tahap tidur atau identifikasi episode apnea. Misalnya, [3] melakukan analisis detrended fluctuation 

pada EEG dari database ini dan menunjukkan bahwa eksponen skala sinyal berbeda antar tahap tidur 

dan kondisi apnea. Penggunaan basis data yang terbuka dan teranotasi seperti ini sangat penting untuk 

kemajuan metodologi, replikasi penelitian, dan komparabilitas antar studi. 

Meski demikian, terdapat berbagai permasalahan yang masih menghambat implementasi luas 

metode-otomatis berbasis database PSG. Pertama, variabilitas dalam preprocessing data, ekstraksi 

fitur, dan konfigurasi model menyebabkan heterogenitas hasil antar penelitian. Kedua, walau banyak 

studi menerapkan machine learning atau deep learning, integrasi sinyal multikanal dan validasi 

eksternal masih terbatas. Ketiga, sebagian besar studi menggunakan dataset yang relatif kecil dan 

usang, sehingga generalisasi ke populasi luas masih dipertanyakan. All ini mengarahkan pada 

kebutuhan untuk melakukan tinjauan sistematis terhadap pemanfaatan MIT-BIH Polysomnographic 

Database: bagaimana dataset ini telah dipakai, pola metodologinya, kekuatan dan keterbatasannya, 

serta arah penelitian ke depan. 

Dengan mempertimbangkan latar belakang tersebut, penelitian ini bertujuan untuk melakukan 

systematic review terhadap studi-studi yang menggunakan MIT-BIH Polysomnographic Database, 

dengan fokus pada teknik analisis sinyal, pendekatan komputasional, dan aplikasi klinis yang 

dihasilkan. Signifikansi penelitian ini terletak pada penyediaan gambaran komprehensif mengenai 

pemanfaatan dataset ini—yang dapat menjadi landasan bagi peneliti selanjutnya dalam memilih 

metodologi, memahami gap penelitian, serta merancang penelitian yang lebih baik dan terstandarisasi.  

 

2 Tinjauan Literatur 

Sle-CNN: a novel convolutional neural network for sleep stage classification [4] 

memperkenalkan jaringan konvolusional efisien khusus untuk klasifikasi lima tahap tidur, dengan 

menyematkan koefisien pelatihan pada kernel di lapisan awal dan menggunakan algoritma genetika 

untuk desain arsitektur otomatis. Model tersebut menunjukkan bahwa struktur yang disederhanakan 

namun teroptimasi dapat mencapai performa tinggi pada sinyal EEG tunggal. Kelebihan penelitian ini 

adalah inovasi arsitektur dan optimasi genetika, tetapi kekurangannya adalah studi terbatas pada 

sinyal tunggal dan kurang membahas integrasi sinyal multikanal atau validasi pasien-independen. 

Dengan demikian, bagian yang belum dilakukan adalah penyelidikan sistematis terhadap pipeline pra-

pemrosesan dan penerapan arsitektur tersebut dalam konteks sinyal multikanal dan data eksternal 

SelANet: decision-assisting selective sleep apnea detection based on confidence score (2023) 

mengusulkan pendekatan deteksi apnea tidur menggunakan sinyal kombinasi (ECG dan SpO₂) dengan 

skor kepercayaan sebagai mekanisme seleksi untuk hanya memutuskan kejadian yang memiliki 

tingkat keyakinan tinggi [5]. Ini merupakan langkah maju dalam menangani ketidakpastian model AI 

dan memfokuskan pada hasil dengan kepercayaan tinggi, sehingga meningkatkan keandalan 

keputusan. Namun, penelitian ini masih terbatas pada sinyal terbatas, belum secara mendalam 

membandingkan berbagai skema fusi sinyal ataupun standarisasi pra-pemrosesan dan validasi 

eksternal. Artikel Anda akan menyasar aspek fusi sinyal multikanal secara sistematis dan 

mengusulkan standarisasi pipeline yang masih kurang dibahas di literatur.  
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A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating 

the Apnea-Hypopnea Index [6] menyajikan sistem berbasis satu-kanal ECG yang menggunakan 

jaringan DSF-SANet + GRU untuk mengestimasi Indeks Apnea-Hipopnea (AHI) dengan performa 

cukup baik (r ≈ 0,87). Penelitian ini menekankan pentingnya metrik klinis AHI sebagai output, bukan 

hanya klasifikasi sederhana, yang membuatnya relevan secara klinis. Kekurangannya adalah 

penggunaan hanya satu jenis sinyal (ECG), validasi terbatas (tidak secara luas diuji pada dataset lain 

dengan konfigurasi berbeda), dan minimnya analisis terhadap proses pra-pemrosesan dan generalisasi 

model. Dengan demikian, penelitian Anda akan memperluas dengan membandingkan berbagai sinyal 

(EEG, ECG, respirasi) dan menguji validasi pasien-independen di dataset publik yang sama. 

Advanced Data Framework for Sleep Medicine Applications: Machine Learning-Based 

Detection of Sleep Apnea Events mengembangkan kerangka data untuk aplikasi medis tidur dengan 

pendekatan pembelajaran mesin pada dataset publik, menyoroti potensi dan tantangan deteksi apnea 

secara otomatis [7]. Artikel ini penting karena menekankan aspek kerangka data dan proses end-to-

end, namun masih belum secara konkret mengeksplorasi standar pra-pemrosesan, integrasi sinyal 

multikanal, ataupun validasi eksternal secara rinci. Hal ini membuktikan bahwa kebutuhan untuk 

pipeline yang dapat direproduksi dan standar masih terbuka 

Wearable Sensors and Artificial Intelligence for Sleep Apnea Detection: A Systematic Review 

(2025) melakukan tinjauan sistematis terhadap integrasi sensor wearable dan AI dalam deteksi 

Obstructive Sleep Apnea (OSA) dengan hasil pooled accuracy ~0,89, sensitivity ~0,79, specificity 

~0,95 [8]. Meskipun meta-analisis ini mencakup banyak studi, mayoritas masih menggunakan data 

tertutup atau sinyal tunggal, dan hanya sedikit yang menerapkan validasi lintas-data secara pasien-

independen atau menyajikan metrik konsisten antar-studi. Ini menegaskan kebutuhan untuk 

standarisasi metodologis dan laporan yang lebih transparan 

Melalui penguraian masing-masing penelitian di atas, terlihat bahwa literatur terkini memang 

telah membuat kemajuan signifikan dalam deteksi gangguan tidur dan klasifikasi tahap tidur, namun 

secara konsisten belum menyediakan solusi standarisasi pipeline pra-pemrosesan, belum melakukan 

studi komparatif strategi fusi sinyal multikanal secara sistematis, dan belum menguji generalisasi 

model melalui validasi pasien-independen pada dataset publik yang sama. Artikel review ini bertujuan 

untuk mengisi kekosongan tersebut dengan menerapkan pendekatan yang terstruktur. Studi ini 

menyajikan analisis kritis terhadap literatur terbaru untuk menyintesis serta merumuskan rekomendasi 

mengenai skema pra-pemrosesan yang paling umum dan efektif digunakan, termasuk perbandingan 

teknis antar metode penyaringan (filtering) dan strategi segmentasi. Selanjutnya, artikel ini melakukan 

pengelompokan dan perbandingan secara sistematis terhadap bukti-bukti penggunaan strategi fusi 

sinyal multikanal dalam penelitian terdahulu. Sintesis atas temuan-temuan tersebut diharapkan dapat 

menghasilkan rekomendasi pipeline yang lebih terstandar bagi penelitian mendatang yang berfokus 

pada SLPDB, sehingga mampu mengatasi fragmentasi pendekatan yang masih terlihat dalam 

penelitian saat ini. 

 

3 Metode Penelitian  

Penelitian ini menggunakan pendekatan systematic review yang berfokus pada identifikasi, 

evaluasi, dan sintesis studi terkini (2015–2025) yang memanfaatkan MIT-BIH Polysomnographic 

Database (MIT-BIH-PSG) dalam pengembangan model prediksi gangguan tidur, terutama apnea tidur 

(sleep apnea) dan gangguan pernapasan terkait tidur. Penggunaan rentang waktu 2015–2025 dipilih 

karena periode ini merepresentasikan perkembangan paling signifikan dalam pemanfaatan MIT-BIH 

Polysomnographic Database untuk analisis gangguan tidur berbasis teknologi. Dalam satu dekade 

terakhir, terjadi kemajuan besar pada metode machine learning, deep learning, serta teknik analisis 

sinyal biomedis, sehingga studi-studi yang terbit pada periode ini lebih relevan dengan pendekatan 

modern dan aplikasi klinis terkini. Selain itu, dataset MIT-BIH-PSG mulai banyak digunakan kembali 

dalam penelitian karena meningkatnya kebutuhan model otomatis untuk deteksi apnea tidur dan 

gangguan pernapasan. Dengan demikian, periode 2015–2025 memungkinkan penelitian ini 

menangkap tren mutakhir, kesenjangan penelitian, serta evolusi metode yang berkontribusi terhadap 

pengembangan sistem prediksi gangguan tidur berbasis data PSG. Pendekatan penelitian mengikuti 

pedoman PRISMA 2020 [9] untuk memastikan transparansi dan reprodusibilitas proses tinjauan 

seperti terlihat pada Gambar 1. 
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Gambar 1 Metode screening PRISMA pada MIT-BIH polysomnography 

 

 Sumber data utama berasal dari publikasi ilmiah peer-reviewed yang tersedia secara open access 

dan terindeks Scopus minimal Q5. Basis data pencarian mencakup IEEE Xplore, PubMed Central, 

ScienceDirect, dan MDPI dengan kombinasi kata kunci: “MIT-BIH Polysomnographic Database”, 

“sleep apnea prediction”, “polysomnography”, “EEG ECG fusion”, dan “deep learning sleep 

disorder”. Proses penapisan (screening) dilakukan berdasarkan kriteria inklusi dan eksklusi yang 

dijabarkan pada Tabel 1 Kriteria Inklusi dan Eksklusi. Secara umum, kriteria inklusi mencakup 

penelitian yang menggunakan MIT-BIH-PSG sebagai dataset utama atau pembanding, menerapkan 

metode pembelajaran mesin atau deep learning, serta melaporkan metrik performansi seperti akurasi, 

sensitivitas, atau AUC. Sementara itu, artikel yang tidak menyebutkan MIT-BIH-PSG secara eksplisit 

atau tidak menyajikan hasil eksperimental dikeluarkan dari analisis. 

 

Tabel 1 Kirteria inklusi dan eksklusi 

Kriteria Inklusi Kriteria Eksklusi 

Artikel menggunakan MIT-BIH 

Polysomnographic Database (SLPDB) secara 

langsung 

Artikel tidak menggunakan MIT-BIH SLPDB 

secara langsung 

Artikel memiliki data lengkap atau metode yang 

dapat direplikasi 

Data tidak lengkap atau metode tidak dapat 

direplikasi 

Fokus penelitian terkait deteksi atau klasifikasi 

gangguan tidur 

Fokus tidak terkait deteksi atau klasifikasi 

gangguan tidur 

Artikel bukan duplikasi (unik) Studi duplikasi 

Artikel ilmiah, relevan dengan domain tidur, 

dan tersedia secara open-access 
 

Artikel ilmiah, relevan dengan domain tidur, 

dan tersedia secara open-access 
 

 

Setiap publikasi yang memenuhi kriteria dievaluasi secara independen oleh dua penelaah. Data 

yang diekstraksi meliputi jenis sinyal (EEG, ECG, respirasi), teknik pra-pemrosesan (filtering, 
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segmentasi, normalisasi), arsitektur model (CNN, RNN, hybrid), metode validasi (cross-validation, 

patient-independent), serta performansi model dalam mendeteksi apnea atau gangguan tidur lainnya. 

Langkah ini merujuk pada pendekatan ekstraksi sistematis sebagaimana digunakan oleh Fan et al. 

(2024) [4] dan Paul et al. (2024) [10] yang meninjau pipeline analisis sinyal tidur menggunakan deep 

learning secara terstruktur. 

Analisis dilakukan secara naratif dengan membandingkan hasil antar-studi untuk menemukan 

pola umum, misalnya pengaruh jenis sinyal terhadap performansi model atau efektivitas fusi 

multimodal dibandingkan sinyal tunggal. Selain itu, dilakukan penilaian metodologis terhadap 

kualitas validasi dan keterbukaan kode yang digunakan. Studi seperti Zhang et al. (2023) [4] dan 

SelANet (BMC Med. Inform. Decis. Mak., 2023) [5] dijadikan acuan metodologi karena 

menampilkan penggunaan data publik secara transparan dan pendekatan berbasis keyakinan prediktif. 

Fokus utama penelitian ini adalah mengidentifikasi celah (gap) dalam pemanfaatan MIT-BIH-

PSG, khususnya kurangnya standarisasi pipeline pra-pemrosesan dan belum adanya konsensus 

terhadap validasi pasien-independen untuk memastikan generalisasi model. Berdasarkan temuan dari 

literatur yang relevan, penelitian ini bertujuan merumuskan rekomendasi metodologis terkait 

penggunaan dataset MIT-BIH-PSG secara lebih optimal untuk prediksi gangguan tidur berbasis 

kecerdasan buatan. 

 

4 Hasil dan Pembahasan 

Penelitian periode 2015–2025 menunjukkan variasi signifikan pada preprocessing, filtering, dan 

segmentasi yang memengaruhi akurasi model berbasis MIT-BIH PSG. Mayoritas studi menggunakan 

baseline filtering berupa bandpass–notch, namun pendekatan adaptive filtering seperti wavelet soft-

thresholding atau EMD–DWT terbukti lebih robust terhadap noise, terutama pada sinyal ECG dan 

respirasi. Dari sisi preprocessing, metode derivatif [11] dan annotation filtering WFDB [12] menjadi 

teknik yang paling konsisten meningkatkan kualitas data dan layak distandardisasi dalam pipeline. 

Perbedaan segmentasi juga berpengaruh: 30-detik tetap paling efektif dan selaras dengan standar 

AASM, sedangkan 60-detik lebih stabil untuk analisis HRV atau apnea berbasis ECG, dan segmentasi 

event-based hanya unggul untuk prediksi dini kejadian (misalnya OSA). Secara keseluruhan, 

kombinasi filtering konvensional + koreksi anotasi + segmentasi 30 detik merupakan komponen 

pipeline yang paling konsisten, sedangkan metode lanjutan seperti recurrence plots, CRC 

spectrogram, atau adaptive filtering bersifat opsional untuk peningkatan performa pada kasus tertentu. 

 

4.1 Hasil Penelitian 

Berdasarkan analisis terhadap 35 artikel open-access bereputasi Q1-Q5 yang menggunakan 

MIT-BIH Polysomnographic Database (SLPDB) selama periode 2015–2025, diperoleh bahwa 

dataset ini paling sering digunakan untuk deteksi sleep apnea, klasifikasi tahapan tidur, dan analisis 

sinyal fisiologis EEG/ECG. Rangkuman hasil utama tiap studi ditunjukkan pada Tabel 2. 

 

Tabel 2 Ringkasan temuan penelitian yang menggunakan MIT-BIH polysomnographic 

database (2015–2025) 
No Peneliti & Tahun Metode Tujuan / Task Hasil Utama Keunikan 
1 Barnes et al. (2022, 

PLOS ONE)[13] 

CNN (EEG 

tunggal) 
Deteksi sleep 

apnea 
Akurasi >92%, 

sensitivitas tinggi 
Fokus pada 

explainability CNN 

2 Guyot et al. (2025, 

PLOS ONE) [14] 

Analisis ECG 

jangka panjang 
Deteksi apnea Akurasi 91% Algoritme ECG-only 

untuk mendeteksi apnea 
3 Gurrala, 

Vijayakumar 

Yarlagadda, 

Padmasai 

Koppireddi, 

Padmaraju[15] 

Ensemble 

Bagged Tree 

(Machine 

Learning) 

Deteksi Sleep 

Apnea & 

Klasifikasi 

Tahap Tidur 

dari sinyal EEG 

MIT-BIH PSG 

Akurasi deteksi 

apnea 95.9% pada 

18 rekaman 

(10.197 epoch) 

Fokus pada ekstraksi 

fitur EEG untuk 

membedakan tahap tidur 

dan mendukung 

diagnosis klinis. 

 

4 Lucas et al. (2022) 

[16] 
Hybrid Machine 

Learning 
Deteksi kantuk Akurasi 88% Fokus pada drowsiness 

menggunakan data PSG 
5 Guillet et al. (2021, 

Frontiers AM&S) 

Analisis ritme 

koherensi 
Analisis ritme 

tidur 
Koherensi tinggi 

antar kanal EEG 

Pendekatan statistik 

nonlinier 
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[17] dan EMG 
6 Singh et al. (2023, 

Frontiers in AI) [18] 
Review metode Kajian fitur 

EEG 
MIT-BIH sering 

digunakan untuk 

benchmarking 

Review komprehensif 

DL untuk EEG 

7 Suboh et al. (2022, 

Frontiers Public 

Health) [11] 

Analisis turunan 

sinyal 
Preprocessing Perbaikan noise 

18–22% 
Feature engineering 

pada domain turunan 

8 Padovano et al. 

(2025, Applied 

Sciences) [19] 

DL + 

Recurrence 
Klasifikasi tidur Akurasi 90% Kombinasi recurrence + 

DL 

9 Paul et al. (2024, 

Sensors) [10] 

Model linier 

segmental 
Sleep stage 

classification 
Akurasi 89% Model interpretable 

berbasis piecewise 
10 Dong et al. (2025, 

ScienceDirect) [20] 

CNN detektor Deteksi event 

EEG 
F1-score 0.91 Validasi lintas dataset 

(MIT-BIH & 

PhysioNet) 
11 Benkő et al. (2022, 

Scientific Reports) 

[21] 

Model-free 

detection 
Deteksi event 

fisiologis 
Deteksi >90% 

tepat waktu 
Tanpa model training 

tradisional 

12 Frontiers Group 

(2015) [22] 
DL & analisis 

sinyal 
Sleep staging Rata-rata akurasi 

85–92% 
Benchmark lintas model 

13 F1000Research 

(2022) [23] 
Machine 

Learning hibrida 
Deteksi apnea Akurasi 88% Open-peer review 

meningkatkan 

transparansi 

14 

 

 

Que, Yinqing 

Jiang, Pengyi 

Zhang, Tianyi 

Cheng, Yunzhang 

[24] 

 

 

CNN untuk fitur 

respirasi, 

Word2Vec 

untuk data fisik, 

dan transformer 

untuk 

penggabungan 

fitur. 

Klasifikasi 

tahap tidur 

berbasis sinyal 

respirasi dan 

informasi fisik 

pasien. 

Akurasi mencapai 

81,96% pada 

MIT-BIH PSG. 

Sleep staging tanpa PSG 

multikanal, hanya 

memakai respirasi + 

metadata dengan 

arsitektur hybrid CNN–

Transformer. 

 

15 S. Rashidi and B. M. 

Asl[25] 

 

Model 

Ensemble 

Stacking + 

Bagging 

Deteksi Tidur Akurasi 99.93% 

(2 kelas), 

97.14%–85.64% 

(3–6 kelas) 

Kombinasi unik 

stacking & bagging, 

akurasi tinggi dengan 

sinyal single-channel 

16 J. Fan et al., [26] EDR Estimation 

Processor (QRS 

+ Adaptive 

Threshold) 

Estimasi laju 

respirasi (EDR) 

& deteksi QRS 

ultra‐low power 

Akurasi QRS 

99.18%, MAE 

EDR 0.73, 

konsumsi daya 

sangat rendah 

(354 nW) 

Prosesor ultra‐low 

power 55 nm dengan 

teknik refractory period 

refreshing & adaptive 

EDR threshold 

17 W. Yang, J. Fan, X. 

Wang, and Q. Liao, 

[27] 

LSTM 

(Respiration 

Signal) 

Klasifikasi 

event 

pernapasan 

(norm, apnea, 

hypopnea) 

Akurasi total 

81.6%; recall 

90.0% (norm), 

87.1% (apnea), 

83.2% (hypopnea) 

Menggunakan anotasi 

30-detik MIT-BIH PSG 

tanpa start–stop event; 

hanya sinyal respirasi 

sebagai input 

18 O. K. Utomo, N. 

Surantha, S. M. Isa, 

and B. Soewito [28] 

WELM + PSO 

(ECG signal) 

Sleep stage 

classification 

pada dataset 

imbalanced 

Akurasi 78.78% 

(REM–NREM–

Wake) dan 

73.09% (Light–

Deep–REM–

Wake) 

Mengatasi 

ketidakseimbangan data 

dengan Weighted ELM 

+ seleksi fitur PSO pada 

MIT-BIH PSG 

19 U. Budak, V. Bajaj, 

Y. Akbulut, O. 

Atila, and A. Sengur  

[29] 

Multi-block 

EEG + LSTM 

(Raw EEG, 

Spectrogram, 

TQWT) 

Deteksi kantuk 

(driver 

drowsiness 

detection) 

Akurasi rata-rata 

94.31% (10-fold 

CV) 

Tiga blok fitur (statistik, 

deep CNN features, 

TQWT sub-bands) 

digabung dengan LSTM 

+ majority voting 

20 Adami, Ali 

Boostani, Reza 

EMD + DWT 

ekstraksi sinyal 

Estimasi 

Breathing Rate 

MAPE sangat 

rendah (3.6–3.9% 

Menggabungkan multi-

sinyal dengan state-
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Marzbanrad, Faezeh 

Charlton, Peter H. 

[30] 

respirasi + EKF 

dengan SQI 

pada 

ECG/PPG/BP 

(BR) otomatis 

yang robust 

terhadap noise 

ECG; 6.0% PPG; 

5.0% BP) pada 

MIT-BIH & 

BIDMC 

vector fusion; tetap 

akurat hingga 0 dB 

noise 

21 J. of Healthcare 

Engineering [31] 

Deep Learning 

(Wavelet + 

Adaptive Soft 

Thresholding, 

MIT-BIH 

Arrhythmia) 

Deteksi aritmia 

otomatis 

(arrhythmia 

detection) 

Akurasi tinggi 

pada dataset MIT-

BIH (berbasis 

deep learning, 

tidak disebutkan 

angka spesifik) 

Kombinasi deep 

learning + wavelet soft-

thresholding untuk 

denoising adaptif dan 

deteksi aritmia presisi 

tinggi 

22 Khalaf, Akram 

Jaddoa 

Mohammed, Samir 

Jasim [12] 

Annotation 

Filtering 

Function 

(MATLAB–

WFDB) 

Standarisasi 

jumlah beat & 

koreksi anotasi 

MIT-BIH untuk 

evaluasi 

QRS/ML 

Menemukan 71% 

penelitian 

memakai jumlah 

beat salah; fungsi 

menghasilkan 

hitungan beat 

yang benar 

Menghapus non-beat 

annotations secara 

otomatis untuk semua 

database PhysioNet; 

meningkatkan validitas 

evaluasi & pelatihan 

ML 

23 

 

Que, Yinqing 

Jiang, Pengyi 

Zhang, Tianyi 

Cheng, Yunzhang 

[24] 

CNN + 

Word2Vec + 

Transformer 

(Respiratory-

based Sleep 

Staging) 

Ekstraksi fitur 

sinyal 

pernapasan & 

data fisik untuk 

klasifikasi tahap 

tidur 

 

Akurasi 81,96% 

pada MIT-BIH 

PSG 

Hanya Menggunakan 

sinyal pernapasan + 

metadata tanpa PSG 

lengkap; arsitektur 

hybrid CNN–

Word2Vec–

Transformer. 

24 Belakhdar, Ibtissem 

Kaaniche, Walid 

Djemal, Ridha 

Ouni, Bouraoui [32] 

Spektral EEG (1 

Hz Sub-bands + 

Individual 

Alpha 

Frequency) 

Deteksi kantuk 

berbasis EEG 

Akurasi ~88,8%, 

waktu proses 0,2 s 

per epoch 

Menggunakan hanya 1 

kanal diferensial & fitur 

alpha tunggal untuk 

mengurangi variabilitas 

antar-individu dan 

cocok untuk 

implementasi embedded 

ARM. 

25 Wei, Ran 

Zhang, Xinghua 

Wang, Jinhai 

Dang, Xin [33] 

DNN (Stacked 

Autoencoder + 

11 Fitur ECG) 

Klasifikasi 

tahap tidur 

(Wake–REM–

NREM) 

berbasis sinyal 

ECG 

 

Akurasi 77%, 

Cohen’s kappa 

0.56 

Menggantikan EEG 

dengan ECG untuk 

monitoring tidur di 

rumah; validasi cross-

subject dari 18 PSG 

MIT-BIH. 

26 Taghizadegan, 

Yashar 

Jafarnia Dabanloo, 

Nader 

Maghooli, Keivan 

Sheikhani, Ali [34] 

 

RP-CNNs 

(ResNet-18 & 

ShuffleNet + 

WMV Fusion) 

Prediksi dini 

OSA 30–120 

detik sebelum 

kejadian 

Akurasi hingga 

90.72% & AUC 

0.90 pada MIT-

BIH & Dublin 

Sleep Apnea 

Menggunakan 

Recurrence Plots untuk 

representasi dinamika 

sinyal PSG dan fusi 

Weighted Majority 

Voting untuk 

meningkatkan performa 

prediksi dibanding studi 

sebelumnya. 

27 Onyema, Edeh 

Michael 

Ahanger, Tariq 

Ahamed 

Samir, Ghouali 

Shrivastava, Manish 

Maheshwari, 

Manish 

Seghir, Guellil 

Mohammed 

Krah, Daniel [35] 

Panel 

Cointegration + 

FMOLS/DOLS 

+ Panel Granger 

Causality 

Menganalisis 

hubungan 

jangka panjang 

& arah 

kausalitas antar 

sinyal fisiologis 

(ECG, EEG, 

BP, RESP) pada 

pasien sleep 

apnea 

Ditemukan 

hubungan kausal 

bilateral ECG–

BP, ECG–EEG, 

EEG–BP serta 

pengaruh 

signifikan 

hemodinamik-

respiratori 

terhadap 

ECG/EEG 

Pendekatan dua-dimensi 

jantung–otak dengan 

pemodelan konvergensi 

jangka panjang & arah 

kausalitas Granger 

untuk mendukung 

keputusan klinis. 

28 Atianashie, Miracle CNN (Single- Klasifikasi Akurasi 92% pada Arsitektur single-level 
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A 

Armah, Ellisha 

D’Archimedes 

Mohammed, Nasiru 

[36] 

channel EEG) + 

Raspberry Pi 

Deployment 

otomatis 

gangguan tidur 

(apnea & 

insomnia) 

menggunakan 

CNN dan GUI 

berbasis real-

time 

MIT-BIH PSG & 

CAP; tanpa perlu 

feature 

extraction/selectio

n manual 

CNN yang ringan & 

dapat berjalan di 

Raspberry Pi untuk 

deteksi gangguan tidur 

secara real-time. 

29 Wang, Wei Bo 

Qin, Dimei 

Fang, Yu 

Zhou, Chao 

Zheng, Yongkang 

[37] 

Hybrid HRV + 

R-Peak Features 

+ GBDT 

Sleep staging 

otomatis (2–5 

level) 

menggunakan 

fitur hibrida 

time–freq–

nonlinear dari 

HRV & RP 

 

Akurasi tinggi: 

91.34% (2-stage), 

89.56% (3-stage), 

87.15% (4-stage), 

82.02% (5-stage); 

kappa hingga 0.77 

Memperkenalkan sinyal 

R-Peak sebagai fitur 

baru yang menangkap 

esensi ECG & bekerja 

stabil di dua database 

(UCDDB & MIT-BIH). 

30 Deep learning in the 

cross-time frequency 

domain for sleep 

staging from a 

single-lead 

electrocardiogram 

[38] 

CRC 

Spectrogram + 

CNN + SVM 

Fusion (ECG-

only Sleep 

Staging) 

Klasifikasi 

tahap tidur 

berbasis ECG 

tunggal melalui 

beat detection, 

cardiorespirator

y coupling 

(coherence & 

cross-

spectrogram), 

CNN & SVM 

Akurasi 75.4% (4-

stage), 81.6% (3-

stage), 85.1% (2-

class); kappa 

hingga 0.68 

Menghasilkan performa 

terbaik berbasis non-

EEG dengan CRC time–

frequency features & 

dataset sangat besar 

tanpa anotasi manual. 

31 Sharma, Manish 

Makwana, Paresh 

Chad, Rajesh Singh 

Acharya, U. 

Rajendra [39] 

BWFB + Hjorth 

Features + 

Ensemble 

Classifier (2-

channel EEG) 

Sleep stage 

classification 

otomatis 

berbasis dua 

kanal EEG 

dengan Hjorth 

parameters dari 

subband 

biorthogonal 

wavelet filter 

bank 

Akurasi 83.2%, 

Kappa 0.7345 (5-

stage), konsisten 

& kompetitif di 5 

database publik 

 

Pioneering work pada 

WSC (dataset sangat 

besar & beragam 

gangguan tidur), model 

ringan untuk perangkat 

rumah & wearable. 

31 Peng, Chun Cheng 

Kou, Chu Yun [40] 

Transfer 

Learning 

AlexNet (ECG-

based OSA 

Prediction) 

Prediksi 

kejadian 

Obstructive 

Sleep Apnea 

dari sinyal ECG 

menggunakan 

transfer learning 

berbasis 

AlexNet 

Akurasi 86.63%, 

sensitivitas 

92.20%, presisi 

90.55%, AUC 

91.95% 

Menunjukkan potensi 

kuat deep learning–

transfer learning untuk 

deteksi OSA berbasis 

ECG yang lebih efisien 

& mudah 

diimplementasikan. 

32 Chatterjee, Arnab 

Jana, Nanda Dulal 

[41] 

ADASYN untuk 

oversampling + 

Tomek-links 

untuk 

pembersihan 

sampel, dengan 

classifier 

Bagged Trees, 

Subspace KNN, 

KNN, dan 

Cubic SVM 

pada MIT-BIH 

meningkatkan 

akurasi 

klasifikasi jenis-

jenis event sleep 

apnea pada data 

EEG yang tidak 

seimbang 

Subspace KNN 

memberikan 

akurasi tertinggi 

yaitu 98.92% 

(MIT-BIH) dan 

81.39% 

(UCDDB) 

kombinasi ADASYN 

dan Tomek-links untuk 

penyeimbangan data 

serta evaluasi lintas dua 

database sehingga hasil 

lebih generalizable. 
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dan UCDDB 

33 Rykhalska, Anna 

Kostiantynivna 

Ivanko, Kateryna 

Olehivna 

Ivanushkina, 

Nataliia Heorhiivna 

Ivanko, Dmytro 

Olehovych [42] 

Fitur HRV & 

EEG + 

KNN/SVM/Bag

ging pada 

Apnea-ECG & 

MIT-BIH 

Klasifikasi 

norm–apnea–

hypopnea 

Akurasi hingga 

99.9% (HRV), 

EEG hanya 91.9% 

HRV paling informatif; 

kombinasi ECG–EEG 

tetap unggul namun 

mirip HRV saja 

34 SleepECG: a Python 

package for sleep 

staging based on 

heart rate [43] 

Sleep staging 

berbasis detak 

jantung 

menggunakan 

HRV, heartbeat 

detection Pan–

Tompkins, 

ekstraksi 33 

fitur HRV + 

RNN classifier 

(SleepECG) 

Mengembangka

n pipeline 

otomatis untuk 

klasifikasi 

Wake/REM/NR

EM tanpa EEG 

 

Akurasi 83% 

(Wake–Sleep) dan 

75% 

(W/REM/NREM) 

pada 1000 data uji 

 

Open-source, cepat (C-

extension), dapat dilatih 

ulang, dan mendukung 

ribuan data PSG secara 

reproducible 

 

35 Detection of Sleep 

Apnea based on the 

analysis of sleep 

stages data using 

single channel EEG 

[15] 

Ekstraksi fitur 

EEG dari PSG + 

Ensemble 

Bagged Tree 

pada dataset 

PhysioNet 

(MIT-BIH) 

Deteksi apnea & 

identifikasi 

tahap tidur 

berbasis sinyal 

EEG 

Akurasi deteksi 

apnea mencapai 

95.9% pada 

10.197 epoch 

Fokus pada EEG saja 

tanpa semua PSG; fitur 

baru EEG membantu 

diagnosis klinis 

 

4.2 Fokus Penelitan 

Terdapat banyak pendekatan pemodelan yang digunakan dalam analisis sinyal tidur berbasis 

MIT-BIH SLPDB. Berdasarkan 35 literatur yang dianalisis, peneliti menemukan lima kategori 

metodologi utama, Sleep Apnea Detection, seperti pada literatur [13], [11], [19], [20], [22], [24], [25], 

[26], [29], [12], [35], [37], [39], [41], Sleep Staging, seperti pada literatur [14], [16], [18], [10], [21], 

[27], [30], [31], [32], [36], [40], Signal Processing Improvement, seperti pada literatur [15], [23], [25], 

[28], [33], Multichannel Fusion Methods, seperti pada literatur [34], [38], [42], [43], Interpretable / 

Explainable AI, seperti pada literatur [15]. 

 
Gambar 2 Distribusi Metodolog Literatur 

Pada Gambar 2, kategori yang paling banyak digunakan adalah Sleep Apnea Detection dengan 

persentase 40%, diikuti oleh Sleep Staging sebesar 31%. Kategori lainnya yaitu Signal Processing 

Improvement, Multichannel Fusion, dan Interpretable AI masing-masing memiliki persentase 14%, 

11%, dan 4%. Dominasi kategori Sleep Apnea Detection disebabkan oleh beberapa keunggulan 
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utama. Task deteksi apnea memiliki pola fisiologis yang lebih jelas, seperti henti napas pada sinyal 

respirasi atau variasi HRV pada ECG, sehingga model machine learning maupun deep learning dapat 

mencapai akurasi sangat tinggi, bahkan lebih dari 95%. Selain itu, jenis sinyal yang digunakan—

seperti ECG, respirasi, dan SpO₂—lebih stabil dan tidak memerlukan segmentasi kompleks seperti 

yang dibutuhkan pada sleep staging berbasis EEG. Relevansi klinis yang tinggi juga menjadi faktor 

penting, karena deteksi apnea sangat diperlukan dalam pengembangan sistem diagnosis dini dan 

perangkat wearable untuk pemantauan tidur. Lebih jauh lagi, efektivitas model deep learning berbasis 

CNN, LSTM, dan arsitektur hybrid dalam mengenali pola apnea menjadikan kategori ini berkembang 

paling cepat secara metodologis. 

Selain variasi metodologi, penelitian-penelitian yang menggunakan MIT-BIH SLPDB juga 

menunjukkan pola yang beragam dalam pemanfaatan jenis sinyal fisiologis. Berdasarkan 35 literatur 

yang dianalisis, peneliti menemukan bahwa empat kelompok sinyal utama—EEG, ECG, respirasi, 

dan kombinasi multikanal—menjadi dasar utama dalam pengembangan model analisis tidur. 

Penggunaan sinyal EEG banyak ditemukan pada studi yang berfokus pada sleep staging dan deteksi 

kantuk, sebagaimana terlihat pada literatur [13], [15], [17], [18], [28], [31], [32], [39], [33], [42], 

[36], [41]. Sementara itu, sinyal ECG merupakan salah satu sinyal yang paling banyak dimanfaatkan, 

terutama dalam sleep apnea detection, seperti pada literatur [11], [12], [14], [20], [24], [25], [26], 

[29], [30], [33], [34], [37], [40]. Pada sisi lain, beberapa penelitian memanfaatkan sinyal respirasi 

sebagai dasar utama analisis, seperti ditunjukkan dalam literatur [19], [25], [26], [29], [31], [34], 

[33], [35], [38], terutama untuk tugas deteksi apnea dan respiratory-based sleep staging. Adapun 

pendekatan multikanal, yang menggabungkan beberapa sinyal seperti EEG, ECG, EMG, dan 

respirasi, ditemukan pada literatur [34], [38], [42], [43], [28], [17] dan menunjukkan performa yang 

lebih komprehensif dalam menangkap dinamika tidur yang kompleks. Distribusi penggunaan data 

dapat terlihat pada gambar 3. 

 
Gambar 3 Distribusi penggunaan sinyal MIT-BIH database 

 

4.3 Sintesis Umum 

Secara keseluruhan, 35 penelitian yang dianalisis menunjukkan variasi performa model yang 

signifikan, dengan akurasi model berkisar antara 78% hingga >99%. Akurasi ini sangat dipengaruhi 

oleh jenis tugas (task)—di mana deteksi gangguan tidur (misalnya, Sleep Apnea) cenderung mencapai 

akurasi tertinggi (>95%)—serta jenis sinyal yang digunakan (EEG, ECG, atau multimodal). Meskipun 

pendekatan Deep Learning (DL) masih menjadi metodologi yang dominan, terlihat adanya 

peningkatan perhatian terhadap model hibrida (hybrid) yang mengombinasikan kekuatan DL dengan 

fleksibilitas model klasik (interpretable) untuk meningkatkan transparansi dan kinerja. Selain itu, 

MIT-BIH SLPDB terus terbukti sebagai dataset yang konsisten dan relevan sebagai tolok ukur 

(benchmark) utama yang valid untuk membandingkan performa lintas pendekatan pemodelan. 
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5 Kesimpulan 

Analisis terhadap 35 studi berbasis MIT-BIH SLPDB menunjukkan bahwa penelitian deteksi dan 

klasifikasi gangguan tidur terus berkembang melalui penerapan lima kategori metodologi utama, 

yakni Sleep Apnea Detection, Sleep Staging, Signal Processing Improvement, Multichannel Fusion 

Methods, dan Interpretable/Explainable AI, dengan dua kategori pertama menjadi fokus dominan. 

Variasi metodologi ini sejalan dengan pola pemanfaatan empat kelompok sinyal fisiologis—EEG, 

ECG, respirasi, dan multikanal—di mana EEG paling banyak digunakan untuk sleep staging, ECG 

untuk deteksi apnea, respirasi sebagai alternatif efektif untuk analisis berbasis laju napas, dan 

multikanal untuk tugas yang menuntut integrasi informasi fisiologis yang lebih luas. Pendekatan deep 

learning, khususnya CNN, LSTM, dan arsitektur hibrida, merupakan metodologi yang paling banyak 

diadopsi, dengan performa model yang dilaporkan berada pada rentang akurasi 78% hingga lebih dari 

99%, bergantung pada jenis sinyal, teknik pra-pemrosesan, dan konfigurasi model. Penelitian ini 

memberikan kontribusi melalui pemetaan sistematis yang menghubungkan metodologi, penggunaan 

sinyal, dan hasil kinerja dalam satu kerangka analitis yang komprehensif, sekaligus mengidentifikasi 

kesenjangan pada aspek interpretabilitas dan variasi pipeline pemrosesan. Ke depan, penelitian perlu 

diarahkan pada pengembangan model hibrida yang lebih interpretable, pemanfaatan sinyal minimalis 

untuk mendukung perangkat wearable, eksplorasi multimodal fusion berbasis arsitektur modern, serta 

validasi klinis yang lebih luas guna meningkatkan reprodusibilitas dan kesiapan implementasi. 

. 
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