Classification using the C4.5 Algorithm in Predicting Students Organizational Status Amikom University Yogyakarta

Neni Firda Wardani Tan, Kusnawi Kusnawi

Abstract


Participation in an organization as a college student is an important way to self-improvement. This research analyzes students' learning in an organization and whether the student is active or not active in an organization using the Decision Tree C4.5 algorithm. Attributes analyzed were out-of-campus organization, previous organization experience, public speaking, problem-solving, confidence level, and personality. From a question from propagating on October 2021, the researcher collect 203 raw data, with 167 processes ones that were used in this research. The test conducted results in a tree or the decision tree that could be used to decide how active a student is in an organization. The accuracy value of this test using cross-validation resulted in a score of 59.27% or in comparison to the data training: data testing of 4:1 or 80%: 20%.


Full Text:

PDF

References


A. Sholikhah, “Pengaruh Keaktifan Mahasiswa Dalam Organisasi Terhadap Prestasi Belajar Mahasiswa Jurusan Pendidikan Ekonomi FE Unesa Angkatan 2015 | Jurnal Pendidikan Ekonomi (JUPE).” [Online]. Available: https://ejournal.unesa.ac.id/index.php/jupe/article/view/24509. [Accessed: 05-Jun-2022].

P. Bayina, R. Nurdin1, S. Likuallo2, and A. Meiliska, “Faktor-Faktor yang Mempengaruhi Minat Mahasiswa Berorganisasi,” J. Manaj. dan Organ. Rev., vol. 2, no. 2, pp. 122–131, Nov. 2020.

J. F. Kimberly, D. B. Prakoso, and T. C. Efrata, “Peran Individual Innovation Capability, Motivasi Intrinsik, dan Self-Efficacy Terhadap Kinerja Individu dalam Organisasi Mahasiswa,” Media Mahard., vol. 17, no. 2, pp. 231–243, Jan. 2019.

A. G. Pertiwi, T. Widyaningtyas, and U. Pujianto, “Classification of province based on dropout rate using C4.5 algorithm,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018-Janua, pp. 410–413, Feb. 2018.

S. Supangat, A. R. Amna, and T. Rahmawati, “Implementasi Decision Tree C4.5 Untuk Menentukan Status Berat Badan dan Kebutuhan Energi Pada Anak Usia 7-12 Tahun,” Teknika, vol. 7, no. 2, pp. 73–78, Nov. 2018.

W. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, “C.45 Classification Rules Model for Determining Students Level of Understanding of the Subject,” J. Phys. Conf. Ser., vol. 1255, no. 1, p. 012005, Aug. 2019.

M. A. Sembiring, M. F. L. Sibuea, and A. Sapta, “Analisa Kinerja Algoritma C.45 Dalam Memprediksi Hasil Belajar,” J. Sci. Soc. Res., vol. 1, no. 1, pp. 73–79, Feb. 2018.

J. P. Jiawei Han, Micheline Kamber, Data mining: Data mining concepts and techniques. 2014.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Data Mining: Practical Machine Learning Tools and Techniques,” Data Min. Pract. Mach. Learn. Tools Tech., pp. 1–621, Nov. 2016.

J. N.Undavia, P. M. Dolia, and N. P. Shah, “Prediction of Graduate Students for Master Degree based on Their Past Performance using Decision Tree in Weka Environment,” Int. J. Comput. Appl., vol. 74, no. 11, pp. 23–29, Jul. 2013.

P.-N. Tan, M. Steinbach, and V. Kumar, “Association Analysis: Basic Concepts and Algorithms,” Introd. to Data Min., pp. 327–414, 2005.

V. Vyas and V. Uma, “An Extensive study of Sentiment Analysis tools and Binary Classification of tweets using Rapid Miner,” in Procedia Computer Science, 2018.

R. K. Markus Hofmann, “RapidMiner: Data Mining Use Cases and Business Analytics Applications Chapman & Hall/CRC Data Mining and Knowledge Discovery: Amazon.de: Hofmann, Markus, Klinkenberg, Ralf: Fremdsprachige Bücher.”

R. Suwandaru, J. Manajemen, and S. Nitro Makassar, “Prosiding SENTIA 2017-Politeknik Negeri Malang Analisis Faktor-Faktor Mahasiswa dalam Memilih Unit Kegiatan Mahasiswa Perguruan Tinggi di Kota Makassar.”

W. D. Pratisti, A. Agung, and A. Ardeliaputri, “Potret Strategi Pemecahan Masalah pada Mahasiswa yang Aktif Berorganisasi,” Ikat. Psikol. Perkemb. Indones., 2013.

P. Jiang and J. Chen, “Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation,” Neurocomputing, vol. 198, pp. 40–47, Jul. 2016.




DOI: https://doi.org/10.32520/stmsi.v11i3.2054

Article Metrics

Abstract view : 137 times
PDF - 128 times

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.