Utilization of Telegram application As an Information Media Face Mask Detection Result

Muhammad Furqan Rasyid, Andi Asvin Maherssatillah Suradi, Arham Arifin, Muhammad Rizal, Mushaf Mushaf


To know the results of the face mask detection system, one must be near a computer. This problem makes it difficult to reprimand and provide face masks to violators. One of the ways to prevent the spread of the virus is to wear a mask. This study focuses on making a face mask detection system connected to a cellular device. This study aims to make obtaining information more effortless, and monitoring officers can find out from a smartphone. As a medium of communication, we use the telegram application. Smartphone users widely use this application compared to existing messaging media applications. This study uses the YoloV4 algorithm to detect face mask and JSON to send information to the telegram application. The test consists of two stages, the first stage is to determine the accuracy of the face mask detection system and the second stage is to determine the average time required until the information is sent. The two tests performed obtained 97.57% and 0.255 seconds, respectively. The test results show that the system created can solve the existing problems. The researcher can do further research by increasing the number of datasets to increase the accuracy of face mask detection.

Keywords: Face Mask Detection, JSON, Telegram Application, YoloV4 Algorithm. 

Full Text:



“WHO Coronavirus (COVID-19) Dashboard.” https://covid19.who.int (accessed Jun. 14, 2022).

S. G. Schauer, J. F. Naylor, M. D. April, B. M. Carius, and I. L. Hudson, “Analysis of the Effects of COVID-19 Mask Mandates on Hospital Resource Consumption and Mortality at the County Level,” South Med J, vol. 114, no. 9, pp. 597–602, Sep. 2021, doi: 10.14423/SMJ.0000000000001294.

“YOLO V4 | Social Distancing and Face Mask Detection using YOLO V4,” Analytics Vidhya, May 03, 2021. https://www.analyticsvidhya.com/blog/2021/05/alleviation-of-covid-by-means-of-social-distancing-face-mask-detection-using-Yolo-v4/ (accessed Feb. 01, 2022).

“How Many People Use Telegram in 2022? 55 Telegram Stats,” Backlinko, Feb. 26, 2021. https://backlinko.com/telegram-users (accessed Jun. 11, 2022).

“Telegram Bot Platform,” Telegram, Jun. 24, 2015. https://telegram.org/blog/bot-revolution (accessed Jun. 13, 2022).

S. Sethi, M. Kathuria, and T. Kaushik, “Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread,” J Biomed Inform, vol. 120, p. 103848, Aug. 2021, doi: 10.1016/j.jbi.2021.103848.

S. Singh, U. Ahuja, M. Kumar, K. Kumar, and M. Sachdeva, “Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment,” Multimed Tools Appl, vol. 80, no. 13, pp. 19753–19768, May 2021, doi: 10.1007/s11042-021-10711-8.

C. Huda, F. A. Bachtiar, and A. A. Supianto, “Reporting Sleepy Driver into Channel Telegram via Telegram Bot,” in 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Sep. 2019, pp. 251–256. doi: 10.1109/SIET48054.2019.8986000.

A. Rahmatulloh, R. Gunawan, H. Sulastri, I. Pratama, and I. Darmawan, “Face Mask Detection using Haar Cascade Classifier Algorithm based on Internet of Things with Telegram Bot Notification,” in 2021 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS), Oct. 2021, pp. 1–6. doi: 10.1109/ICADEIS52521.2021.9702065.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv:2004.10934 [cs, eess], Apr. 2020, Accessed: Feb. 16, 2022. [Online]. Available: http://arxiv.org/abs/2004.10934

“YOLOv4 Darknet Object Detection Model,” Roboflow. https://models.roboflow.com/object-detection/Yolov4 (accessed Feb. 13, 2022).

P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth, “SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2,” Sustain Cities Soc, vol. 66, p. 102692, Mar. 2021, doi: 10.1016/j.scs.2020.102692.

M. Rasyid, Z. Zainuddin, and A. Andani, “Early Detection of Health Kindergarten Student at School Using Image Processing Technology,” in Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia, Makassar, Indonesia, 2019. doi: 10.4108/eai.2-5-2019.2284609.

E. P. Purwandari, A. Erlansari, A. Wijanarko, and E. A. Adrian, “Pengenalan sketsa wajah menggunakan principle component analysis sebagai aplikasi forensik,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 3, pp. 178–184, Jul. 2020, Accessed: Nov. 23, 2021. [Online]. Available: https://jtsiskom.undip.ac.id/article/view/13422

T. Lin, “labelImg: LabelImg is a graphical image annotation tool and label object bounding boxes in images.” Accessed: Jun. 11, 2022. [Online]. Available: https://github.com/tzutalin/labelImg

T. Lv, P. Yan, and W. He, “Survey on JSON Data Modelling,” Journal of Physics: Conference Series, vol. 1069, p. 012101, Aug. 2018, doi: 10.1088/1742-6596/1069/1/012101.

“JSON.” https://www.json.org/json-en.html (accessed Jun. 07, 2022).

N. Harrand, T. Durieux, D. Broman, and B. Baudry, The Behavioral Diversity of Java JSON Libraries. 2021.

Z. Brahmia, S. Brahmia, F. Grandi, and R. Bouaziz, “JUpdate: A JSON Update Language,” Electronics, vol. 11, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/electronics11040508.

B. N. Network, “Why telegram is better than WhatsApp ?,” Digital Journal. https://www.digitaljournal.com/pr/why-telegram-is-better-than-whatsapp (accessed Jun. 04, 2022).

S. Faramarzi, H. Tabrizi, and A. Chalak, “Telegram: An instant messaging application to assist distance language learning,” vol. 19, pp. 132–147, Jan. 2019.

D. Prasetyo, E. D. Widianto, and I. P. Indasari, “Short Message Service Encoding Using the Rivest-Shamir-Adleman Algorithm,” Jurnal Online Informatika, vol. 4, no. 1, Art. no. 1, Sep. 2019, doi: 10.15575/join.v4i1.264.

I. Barranco-Chamorro and R. Carrillo-García, “Techniques to Deal with Off-Diagonal Elements in Confusion Matrices,” Mathematics, vol. 9, p. 3233, Dec. 2021, doi: 10.3390/math9243233.

N. T. Handoko, “Confusion Matrix Explained,” Medium, Oct. 19, 2021. https://towardsdatascience.com/confusion-matrix-explained-5d42122a04d6 (accessed Dec. 22, 2021).

“Confusion Matrix - an overview | ScienceDirect Topics.” Accessed: Jul. 04, 2022. [Online]. Available: https://www.sciencedirect.com/topics/engineering/confusion-matrix

Moh. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput, vol. 9, no. 4, pp. 218–223, Oct. 2021, doi: 10.14710/jtsiskom.2021.14013.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Information Sciences, vol. 507, pp. 772–794, Jan. 2020, doi: 10.1016/j.ins.2019.06.064.

T. Sutikno, L. Handayani, D. Stiawan, M. A. Riyadi, and I. Much Ibnu Subroto, “WhatsApp, Viber and Telegram which is Best for Instant Messaging?,” IJECE, vol. 6, no. 3, p. 909, Jun. 2016, doi: 10.11591/ijece.v6i3.10271.

DOI: https://doi.org/10.32520/stmsi.v12i1.2264

Article Metrics

Abstract view : 424 times
PDF - 84 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.