Improvement of KNN Collaborative Filtering Model in User-based Approach on Anime Recommendation System
Abstract
Full Text:
PDFReferences
F. Ricci, L. Rokach, and B. Shapira, Recommender Systems Handbook. Boston, MA: Springer US, 2011. doi: 10.1007/978-0-387-85820-3.
Y. Hu, F. Xiong, D. Lu, X. Wang, X. Xiong, and H. Chen, “Movie collaborative filtering with multiplex implicit feedbacks,” Neurocomputing, vol. 398, pp. 485–494, Jul. 2020, doi: 10.1016/j.neucom.2019.03.098.
J.-H. Su, W.-Y. Chang, and V. S. Tseng, “Effective social content-based collaborative filtering for music recommendation,” Intelligent Data Analysis, vol. 21, pp. S195–S216, Apr. 2017, doi: 10.3233/IDA-170878.
Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, “Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities,” Applied Sciences, vol. 10, no. 21, p. 7748, Nov. 2020, doi: 10.3390/app10217748.
N. F. Al-Bakri and S. H. Hashim, “Reducing Data Sparsity in Recommender Systems,” Journal of Al-Nahrain University Science, vol. 21, no. 2, pp. 138–147, Jun. 2018, doi: 10.22401/JNUS.21.2.20.
A. S. Girsang, B. Al Faruq, H. R. Herlianto, and S. Simbolon, “Collaborative Recommendation System in Users of Anime Films,” J Phys Conf Ser, vol. 1566, no. 1, p. 012057, Jun. 2020, doi: 10.1088/1742-6596/1566/1/012057.
J.-J. Vie et al., “Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario,” in 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Nov. 2017, pp. 21–26. doi: 10.1109/ICDAR.2017.287.
B. Guo, S. Xu, D. Liu, L. Niu, F. Tan, and Y. Zhang, “Collaborative filtering recommendation model with user similarity filling,” in 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), IEEE, Oct. 2017, pp. 1151–1154. doi: 10.1109/ITOEC.2017.8122536.
S. Suriati, M. Dwiastuti, and T. Tulus, “Weighted hybrid technique for recommender system,” J Phys Conf Ser, vol. 930, p. 012050, Dec. 2017, doi: 10.1088/1742-6596/930/1/012050.
A. S. Dharma, R. B. B. A. Hutasoit, and R. R. Pangaribuan, “Sistem Rekomendasi Menggunakan Item-based Collaborative Filtering pada Konten Artikel Berita,” Jurnal Nasional Teknik Informatika dan Elektro (JURNALTIO), vol. 2, no. 1, 2021.
I. G. Gusti, M. Nasrun, and R. A. Nugrahaeni, “Rekomendasi Sistem Pemilihan Mobil Menggunakan K-Nearest Neighbor (KNN) Collaborative Filtering ,” TEKTRIKA, vol. 4, no. 1, 2019.
O. Bourkoukou and O. Achbarou, “Weighting based approach for learning resources recommendations,” JOIV : International Journal on Informatics Visualization, vol. 2, no. 3, p. 104, Apr. 2018, doi: 10.30630/joiv.2.3.124.
Matěj Račinský, “MyAnimeList Dataset,” https://www.kaggle.com/azathoth42/myanimelist, 2018.
J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal, “A collaborative filtering approach to mitigate the new user cold start problem,” Knowl Based Syst, vol. 26, pp. 225–238, Feb. 2012, doi: 10.1016/j.knosys.2011.07.021.
B. M. Kim, Q. Li, C. S. Park, S. G. Kim, and J. Y. Kim, “A new approach for combining content-based and collaborative filters,” J Intell Inf Syst, vol. 27, no. 1, pp. 79–91, Jul. 2006, doi: 10.1007/s10844-006-8771-2.
Q. Li, S. H. Myaeng, and B. M. Kim, “A probabilistic music recommender considering user opinions and audio features,” Inf Process Manag, vol. 43, no. 2, pp. 473–487, Mar. 2007, doi: 10.1016/j.ipm.2006.07.005.
DOI: https://doi.org/10.32520/stmsi.v12i2.2473
Article Metrics
Abstract view : 447 timesPDF - 251 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.