People Counting for Train Temperature Control using You Only Look Once v5 Method

Fita Sari, Wahyu Pribadi, Adiratna Ciptaningrum

Abstract


AC (Air Conditioner) is an air conditioning system that is used anywhere, one of them on the train. Air conditioning is also a major factor in the comfort level of train passengers. However, train air conditioning currently can only be controlled manually from the driver's cabin so that the number of passengers does not affect the air conditioning temperature. What's more, the air conditioner absorbs 30% of the total power in the train. Therefore, this research was compiled with the aim of being able to calculate the number of passengers through the concept of people counting using the You Only Look Once (YOLO) method for the train's temperature control system. This research was built using 1 object class, namely person and the YOLOv5 algorithm, where this method is an object detection method with a high degree of accuracy. This research was designed using the Python programming language with the Google Colaboratory platform and MQTT for the data storage protocol for passenger detection results. The dataset used is passengers in the train as many as 1300 images. The training and validation results model obtained a 99.63% mAP, 95% precision, 100% recall, 97.5% F1 score, and 79.96% average IoU. Then, the model was tested and obtained 99.35% mAP, 95% precision, 99% recall, and 97% F1 score. This research resulted in a fairly good system performance in detecting and counting passengers on trains.

Full Text:

PDF

References


K. Azhar, I. Santoso dan Y. Soetrisno, “Implementasi deep learning menggunakan Metode convolutional neural network dan Algoritma Yolo Dalam Sistem Pendeteksi Uang Kertas Rupiah Bagi Penyandang low vision,” TRANSIENT, Vol. %1 dari %210, No.3, p. 502, 2021.

M. S. Coronel C, “Database Systems: Design, Implementation, & Management. Cengage Learning,” 2016.

A. Sahla, “Comparative Analysis of YOLOv3, YOLOv4 and YOLOv5 for Sign Language Detection,” IJARIE, vol. 7, pp. 2395-2398, 2021.

T. Kusuma, K. Usman dan S. Saidah, “People Counting For Public Transportations Using You Only Look Once Method,” Jurnal Teknik Informatika (JUTIF), Vol. %1 dari %22, No.1, pp. 2723-3871, 2021.

Y. W. Hsu, Y. Chen dan j. Perng, “Article Estimation of the Number of Passengers in a Bus Using Deep Learning,” 2020.

D. Mulyana dan M. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” Jurnal Pendidikan Tambusai, Vol. %1 dari %26, No.3, pp. 13971-13982, 2022.

H. Tohari, Analisis Serta Perancangan Sistem Informasi Melalui Pendekatan UML, Yogyakarta: Penerbit Andi, 2014.

Kusrini dan A. Kristanto, Tuntunan Praktis Membangun Sistem Informasi Akuntansi dengan Visual Basic dan SQL Server, Yogyakarta: Penerbit Andi, 2009.

A. Kadir, Pengenalan Sistem Informasi Edisi Revisi, Yogyakarta: Penerbit Andi, 2013.

F. Ilmiajayanti dan D. I. K. Dewi, “Persepsi Pengguna Taman Tematik Kota Bandung Terhadap Aksesibilitas Dan Pemanfaatannya,” RUANG, Volume 1, Nomor 1, 2015 ISSN: 2356-0088, p. 23, 2015.

T. Hidayat dan F. Restu, “Design Development Of Railway Air Conditioning System by PT. INKA (PERSERO),” Jurnal Penelitian Transportasi Darat, vol. 19, pp. 13-36, 2017.

U. Nepal dan H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs”.

K. Geraldy dan C. Lubis, “Pendeteksian Dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once dan Convolutional Neural Network,” Jurnal Ilmu Komputer dan Sistem Informasi.

D. Thuan, “Evolution of Yolo Algorithm And Yolov5: The State-of-The-Art Object Detection Algorithm”.

W. Novtian, B. Suyitno dan R. Hermawan, “Optimasi Sistem Pengkondisian Udara pada Kereta Rel Listrik,” Jurnal Teknik Mesin, 2017.

G. Johanssen, “Human-Machine Interaction,” EOLSS, vol. 21.

Nife, Nadia, Chtourou dan Mohammed, “Improved Detection and Tracking of Objects Based on a Modified Deep Learning Model (YOLOv5),” International Journal of Interactive Mobile Technologies (iJIM), vol. 17, p. 19, 2023.

A. Khalfaoi, A. Badri dan I. E. Mourabit, “An improved YOLOv5 for real-time human detection in,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, pp. 1078-1086, 2023.




DOI: https://doi.org/10.32520/stmsi.v13i4.3248

Article Metrics

Abstract view : 296 times
PDF - 108 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.