Utilizing Google Trends Data to Examine the Impact of Unemployment Rates on Indonesia's Gross Domestic Product

Giani Jovita Jane, Rafif Hasabi, Sinatrya Dwi Purnatadya, Fitri Kartiasih

Abstract


Abstract
Data related to the economy have varying frequencies and have delays in publication time. Such as data on the Open Unemployment Rate (OUR) with a semi-annual frequency and Gross Domestic Product at Constant Prices (riil GDP) according to expenditure with a quarterly frequency. So, frequency conversion is required to conduct simple regression modelling using these data. On the other hand, big data such as Google Trends is an additional predictor to estimate OUR and GDP data to overcome delays in publication time. Then the estimated data is modelled to investigate the effect of OUR on GDP. Data conversion uses the Chow-Lin method, while estimation with Google Trends data uses robust regression. The study shows that the estimation results using Google Trends as an additional predictor provide more accurate results than without Google Trends data for OUR and GDP data. Based on the robust regression results, it can be concluded that the OUR has a negative and significant effect on GDP. The findings provide valuable insights for supporting sustainable economic policy and further research on economic analysis.

Full Text:

PDF

References


P. Romhadhoni, D. Z. Faizah, and N. Afifah, “Pengaruh Produk Domestik Regional Bruto (PDRB) daerah terhadap pertumbuhan ekonomi dan tingkat pengangguran terbuka di Provinsi DKI Jakarta,” J. Mat. Integr., vol. 14, no. 2, p. 113, 2019, doi: https://doi.org/10.24198/jmi.v14i2.19262.

R. Hawari and F. Kartiasih, “Kajian Aktivitas Ekonomi Luar Negeri Indonesia Terhadap Pertumbuhan Ekonomi Indonesia Periode 1998-2014,” Media Stat., vol. 9, no. 2, p. 119, 2017, doi: 10.14710/medstat.9.2.119-132.

A. R. Subian, D. A. Mulkan, H. H. Ahmady, and F. Kartiasih, “Comparison Methods of Machine Learning and Deep Learning to Forecast The GDP of Indonesia,” Sist. J. Sist. Inf., vol. 13, no. 1, pp. 149–166, 2024.

A. I. Widiyasari, I. A’mal, N. F. Putri Yunardi, and F. Kartiasih, “Analisis Variabel Ketenagakerjaan Terhadap Produktivitas Pekerja Indonesia Tahun 2022,” Semin. Nas. Off. Stat., vol. 2023, no. 1, pp. 117–126, 2023, doi: 10.34123/semnasoffstat.v2023i1.1855.

F. A. Sibagariang, L. M. Mauboy, R. Erviana, and F. Kartiasih, “Gambaran Pekerja Informal dan Faktor-Faktor yang Memengaruhinya di Indonesia Tahun 2022,” in Prosiding Seminar Nasional Official Statistics 2023: Peran Official Statistics dan Sains Data dalam Mewujudkan Ketahanan Pangan Nasional, 2023, pp. 151–161.

F. Kartiasih, N. D. Nachrowi, I. D. G. K. Wisana, and D. Handayani, Potret Ketimpangan Digital dan Distribusi Pendapatan di Indonesia: Pendekatan Regional Digital Development Index, 1st ed. Depok, Indonesia: UI Publishing, 2023.

Y. P. Ningsih and F. Kartiasih, “Dampak Guncangan Pertumbuhan Ekonomi Mitra Dagang Utama terhadap Indikator Makroekonomi Indonesia,” J. Ilm. Ekon. dan Bisnis, vol. 16, no. 1, pp. 78–92, 2019, doi: https://doi.org/10.31849/jieb.v16i1.2307.

S. J. Adwendi and F. Kartiasih, “Penggunaan Error Correction Mechanism dalam Analisis Pengaruh Investasi Langsung Luar Negeri Terhadap Pertumbuhan Ekonomi Indonesia,” Stat. J. Theor. Stat. Its Appl., vol. 16, no. 1, pp. 17–27, 2016, doi: 10.29313/jstat.v16i1.1767.

N. Hartati, “Pengaruh Inflasi Dan Tingkat Pengangguran Terhadap Pertumbuhan Ekonomi Di Indonesia Periode 2010 – 2016,” J. Ekon. Syariah Pelita Bangsa, vol. 5, no. 01, pp. 92–119, 2020, doi: 10.37366/jespb.v5i01.86.

I. K. P. Widyarta, C. P. D. Samosir, P. Aysyah, and F. Kartiasih, “Revisiting Unemployment in Indonesia: Error Correction Model (ECM) Analysis,” J. Akuntansi, Manajemen, Bisnis dan Teknol., vol. 4, no. 2, pp. 222–241, 2024.

Badan Pusat Statistik, Produk domestik bruto indonesia menurut pengeluaran 2018-2022. Jakarta: Badan Pusat Statistik, 2022.

A. M. Okun, Potential GNP: its measurement and significance. Cowles Foundation for Research in Economics at Yale University, 1963.

M. Fajar, “Aplikasi Model MIDAS pada Pemodelan Hubungan antara Tingkat Pengangguran Terbuka dan Pertumbuhan Ekonomi,” Semin. Nas. Off. Stat. 2021, no. June, 2021, doi: 10.13140/RG.2.2.31228.59529.

R. Efrianti, A. Irawan, and A. Akbar, “Pengaruh Pertumbuhan Ekonomi Terhadap Tingkat Pengangguran Di Provinsi Sumatera Selatan Tahun 2002 – 2019,” Http://Journal.Unbara.Ac.Id/Index.Php/Klassen, vol. 1, no. 1, pp. 36–49, 2021.

C. Foroni, M. Marcellino, and C. Schumacher, “Unrestricted Mixed Data Sampling (MIDAS): MIDAS Regressions with Unrestricted Lag Polynomials,” J. R. Stat. Soc. Ser. A Stat. Soc., vol. 178, no. 1, pp. 57–82, Jan. 2015, doi: 10.1111/rssa.12043.

I. Bouayad, J. Zahir, and A. Ez-Zetouni, “Nowcasting and Forecasting Morocco GDP growth using Google Trends data,” IFAC-PapersOnLine, vol. 55, no. 10, pp. 3280–3285, 2022, doi: 10.1016/j.ifacol.2022.10.129.

United Nation, The Sustainable Development Goals Report 2022. New York: United Nation, 2022.

A. M. Suhaib and F. Kartiasih, “The Impact of Digital Technology on Women’s Participation in the Labor Force in Papua Province,” J. Ketenagakerjaan, vol. 19, no. 2, pp. 218–232, 2024, doi: 10.47198/jnaker.v19i2.342.

K. Fadillah and F. Kartiasih, “The effect of COVID-19 and population mobility on the underemployment rate in Indonesia,” J. Kependud. Indones., vol. 18, no. 2, pp. 217–236, 2023, doi: 10.55981/jki.2023.2037.

F. Y. Kamal, M. I. Sari, M. F. G. U. Utami, and F. Kartiasih, “Penggunaan Remote Sensing dan Google Trends untuk Estimasi Produk Domestik Bruto Indonesia,” Equilib. J. Penelit. Pendidik. dan Ekon., vol. 21, no. 02, pp. 37–59, 2024.

W. E. Pramesthy, P. Muthi, M. A. Budiman, Z. Ahmad, and F. Kartiasih, “The Effect of E-Commerce on Gross Regional Domestic Product and Clustering of Its Characteristics by Utilizing Official Statistics and Big Data,” J. Econ. Business, Account. Ventur., vol. 27, no. 1, pp. 14–32, 2024, doi: 10.14414/jebav.v27i1.4136.

N. Yuliana, U. A. Syifa, S. Z. Ramadhanty, and F. Kartiasih, “Nowcasting of Indonesia’s Gross Domestic Product Using Mixed Sampling Data Regression and Google Trends Data,” Eig. Math. J., vol. 7, no. 2, pp. 67–80, 2024.

C. Anghelache, ÿtefan V. Iacob, and D. L. Grigorescu, “Analysis of the quarterly evolution of the Gross Domestic Product,” Theor. Appl. Econ., vol. XXVII, no. 3, pp. 243–260, 2020.

R. England W., “Measurement of social well-being: alternatives to gross domestic product,” Ecol. Econ., vol. 25, no. 1, pp. 89–103, 1998.

A. Kusumasari and F. Kartiasih, “Aglomerasi Industri Dan Pengaruhnya Terhadap Pertumbuhan Ekonomi Jawa Barat 2010-2014,” J. Apl. Stat. Komputasi Stat., vol. 9, no. 2, pp. 28–41, 2017, doi: https://doi.org/10.34123/jurnalasks.v9i2.143.

F. Kartiasih, “Dampak Infrastruktur Transportasi Terhadap Pertumbuhan Ekonomi Di Indonesia Menggunakan Regresi Data Panel,” J. Ilm. Ekon. Dan Bisnis, vol. 16, no. 1, pp. 67–77, 2019, doi: 10.31849/jieb.v16i1.2306.

F. Kartiasih, “Transformasi Struktural dan Ketimpangan Antardaerah di Provinsi Kalimantan Timur,” Inov. J. Ekon. Keuang. dan Manaj., vol. 15, no. 1, pp. 105–113, 2019, doi: https://doi.org/10.30872/jinv.v15i1.5201.

A. A. G. R. B. D. Pemayun, M. Z. Azizi, N. A. Daulay, N. H. Apriliani, and F. Kartiasih, “Estimation of Java GRDP in Regency/City Level: Satellite Imagery and Machine Learning Approaches,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. X, no. 2, pp. 379–386, 2024.

H. Choi and H. Varian, “Predicting the Present with Google Trends,” Econ. Rec., vol. 88, no. SUPPL.1, pp. 2–9, 2012, doi: 10.1111/j.1475-4932.2012.00809.x.

L. Samaras, E. García-Barriocanal, and M.-A. Sicilia, “Comparing Social media and Google to detect and predict severe epidemics,” Sci. Rep., vol. 10, no. 1, p. 4747, 2020, doi: 10.1038/s41598-020-61686-9.

E. A. Costa, M. E. Silva, and A. B. Galvão, “Real-time nowcasting the monthly unemployment rates with daily Google Trends data,” Socioecon. Plann. Sci., vol. 95, no. May, p. 101963, 2024, doi: 10.1016/j.seps.2024.101963.

W. K. Adu, P. Appiahene, and S. Afrifa, “VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google trends,” J. Electr. Syst. Inf. Technol., vol. 10, no. 1, pp. 1–16, 2023, doi: 10.1186/s43067-023-00078-1.

G. Bruno, T. Di Fonzo, R. Golinelli, and G. Parigi, “Short-run GDP forecasting in G7 countries : temporal disaggregation techniques and bridge models,” Eur. Comm. (Eurostat, EuroIndicators) Work. Pap. Stud., 2005.

P. S. Luthfiana and N. Nasrudin, “Disaggregation and Forecasting of the Monthly Indonesian Gross Domestic Product (GDP),” Bul. Ekon. Monet. dan Perbank., vol. 20, no. 4, pp. 497–526, 2018, doi: 10.21098/bemp.v20i4.905.

L. Mosley, I. A. Eckley, and A. Gibberd, “Sparse temporal disaggregation,” J. R. Stat. Soc. Ser. A Stat. Soc., vol. 185, no. 4, pp. 2203–2233, 2022, doi: 10.1111/rssa.12952.

C. Sax and P. Steiner, “Temporal Disaggregation of Time Series,” R J., vol. 5, no. 2, pp. 80–87, 2013, doi: 10.32614/RJ-2013-028.

M. S. Akmal, “An Empirical Analysis of the Relationship Between GDP and Unemployment,” Humanomics, vol. 19, no. 3, pp. 1–6, 2003, doi: 10.1108/eb018884.

L. Levine, “Economic growth and the unemployment rate,” Labor Mark. Recover. After Recess. 2007-2009 Sel. Anal., pp. 55–64, 2014.

C.-W. Lee and A. D. Huruta, “Okun’s law in an emerging country: An empirical analysis in Indonesia,” Int. Entrep. Rev., vol. 5, no. 4, pp. 141–161, 2019, doi: 10.15678/IER.2019.0504.09.

D. W. Suryono, A. Burda, and R. Chandra, “Does Indonesia’s Economic Growth Reduce Unemployment?,” vol. 132, no. AICMaR 2019, pp. 169–171, 2020, doi: 10.2991/aebmr.k.200331.037.

R. Nooraeni, N. S. Purba, and N. P. Yudho, “Using Google Trend Data as an Initial Signal Indonesia Unemployment Rate,” Contrib. Pap. Sesssion, vol. 3, no. 1, pp. 265–273, 2020.

L. Widyarsi and H. Usman, “Penggunaan Data Google Trends untuk Peramalan Tingkat Pengangguran Terbuka di Tingkat Nasional dan Regional di Provinsi Jawa Barat,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 980–990, 2021, doi: 10.34123/semnasoffstat.v2021i1.842.

C. A. Medel, “A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA,” J. Bus. Cycle Res., vol. 14, no. 1, pp. 47–87, 2018, doi: 10.1007/s41549-018-0023-3.

V. Krisdiantoro, “Pengaruh Tenaga Kerja, Investasi Dan Kurs Tukar Terhadap Pertumbuhan Ekonomi Di Indonesia,” Mar. 2020.

R. I. Arumnisaa and A. W. Wijayanto, “Comparison of Ensemble Learning Method: Random Forest, Support Vector Machine, AdaBoost for Classification Human Development Index (HDI),” Sist. J. Sist. Inf., vol. 12, no. 1, p. 206, 2023, doi: 10.32520/stmsi.v12i1.2501.

G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2, pp. 197–227, 2016, doi: 10.1007/s11749-016-0481-7.

G. Biau and E. Scornet, “A random forest guided tour,” TEST, vol. 25, no. 2, pp. 197–227, Jun. 2016, doi: 10.1007/s11749-016-0481-7.

M. J. Kane, N. Price, M. Scotch, and P. Rabinowitz, “Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks,” BMC Bioinformatics, vol. 15, no. 1, 2014, doi: 10.1186/1471-2105-15-276.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.

P. Sedgwick, “Pearson’s correlation coefficient,” Bmj, vol. 345, 2012.

S. Sugiyono, “Metode penelitian kuantitatif dan kualitatif dan R&D,” Alf. Bandung, pp. 170–182, 2010.

J. Neter, Applied Linear Statistical Models. in Irwin series in statistics. Irwin, 1996. [Online]. Available: https://books.google.co.id/books?id=q2sPAQAAMAAJ

R. Kurniawan and B. Yuniarto, Analisis Regresi: Dasar dan Penerapannya dengan R, 1st ed. Jakarta: Kencana, 2016.

J. Nahar and S. Purwani, “Application of Robust M-Estimator Regression in Handling Data Outliers,” 4th ICRIEMS Proc., pp. 53–60, 2017.

T. W. Gress, J. Denvir, and J. I. Shapiro, “Effect of Removing Outliers on Statistical Inference: Implications to Interpretation of Experimental Data in Medical Research,” Marshall J. Med., vol. 4, no. 2, 2018, doi: 10.18590/mjm.2018.vol4.iss2.9.

A. Fitrianto and S. H. Xin, “Comparisons Between Robust Regression Approaches In The Presence Of Outliers And High Leverage Points,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 243–252, Mar. 2022, doi: 10.30598/barekengvol16iss1pp241-250.

Y. W. Wen, Y. W. Tsai, D. B. C. Wu, and P. F. Chen, “The Impact of Outliers on Net-Benefit Regression Model in Cost-Effectiveness Analysis,” PLoS One, vol. 8, no. 6, pp. 1–9, 2013, doi: 10.1371/journal.pone.0065930.

D. Q. F. de Menezes, D. M. Prata, A. R. Secchi, and J. C. Pinto, “A review on robust M-estimators for regression analysis,” Comput. Chem. Eng., vol. 147, 2021.

N. Donthu and A. Gustafsson, “Effects of COVID-19 on business and research,” J. Bus. Res., vol. 117, pp. 284–289, 2020, doi: https://doi.org/10.1016/j.jbusres.2020.06.008.

D. N. Gujarati and D. C. Porter, Basic Econometric, 5th ed. New York: New York: McGraw Hill, 2015.

A. P. Utomo, N. P. Sumartini, A. P. G. Siregar, N. Nagari, and S. Triyaningsih, “Regresi Robust Untuk Memodelkan Pendapatan Usaha Industri Makanan Non-Makloon Berskala Mikro dan Kecil di Jawa Barat Tahun 2013,” J. Mat. Sains, dan Teknol., vol. 15, no. 2, pp. 63–74, 2014.




DOI: https://doi.org/10.32520/stmsi.v13i6.3603

Article Metrics

Abstract view : 106 times
PDF - 72 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.