Fuzzy tahani Implementation for Food Nutritional Status in Achieving Balanced Nutritional Dietary

Ika Novita Dewi, Rino Agung Priyo Utomo, Ramadhan Rakhmat Sani

Abstract


Fulfilling nutritional needs with the Recommended Dietary Allowances (RDA) shows the average value of the number of vitamins, protein and other nutrients the body needs to function properly. Each person's nutritional needs are different, so the RDA can be calculated based on different age groups and gender. In general, there are still many people who do not know the nutritional value of food and consume food without considering whether it meets the body's needs. This usually happens because calculating the RDA value is not yet familiar to do. Efforts are needed to increase awareness about the importance of a balanced diet through RDA calculations. Calculation and determination of nutritional status using the RDA number serves as a measuring tool to monitor whether a person's nutritional intake is in accordance with daily needs. This research developed a web-based application to calculate RDA numbers and group RDA numbers into nutritional status of less, enough, or more. Determination of nutritional status is carried out using the fuzzy tahani method, by displaying the results in percentage form, so that users can easily see the proportion or percentage of nutritional status obtained. This application not only calculates nutritional values, but provides a food record feature to help users manage healthy eating patterns.

Full Text:

PDF

References


I. Mahgfirah, I. Munawarah, and D. A. AGS, “Kegiatan Edukatif ‘Gerakan Aksi Bergizi’ Pada Remaja Di Fajar Hidayah Boarding School Kabupaten Aceh Besar,” Beujroh J. Pemberdaya. dan Pengabdi. pada Masy., vol. 2, no. 2, pp. 284–293, 2024, doi: 10.61579/beujroh.v2i2.110.

D. Syahputra and Muhathir, “Perhitungan Metode Fuzzy Sugeno dan Antropometri dalam Memprediksi Status Gizi Indeks Massa Tubuh,” JITE (Journal Informatics Telecommun. Eng., vol. 2, no. 1, pp. 16–22, 2018.

M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “Application of Machine Learning in Determining the Classification of Children’S Nutrition With Decision Tree,” J. Tek. Inform., vol. 3, no. 5, pp. 1457–1465, 2022, doi: 10.20884/1.jutif.2022.3.5.599.

Y. Yuliana, L. Firgia, and V. Wati, “Implementasi Machine Learning Menggunakan Metode Case Based Reasoning Untuk Diagnosa Gizi Buruk Pada Anak,” J. Tek. Inf. dan Komput., vol. 5, no. 2, p. 399, 2022, doi: 10.37600/tekinkom.v5i2.563.

A. A. Shakira, A. Ibrahim, K. D. Tania, A. Wedhasmara, and P. P. Suarli, “Pemodelan Manajemen Hubungan Pelanggan Berbasis Website di Rumah Sakit Islam Ar-Rasyid Palembang,” Sistemasi, vol. 12, pp. 626–636, 2023.

Y. A. Susetyo, “Arsitektur Geospatial API dengan Laravel untuk Sistem Deteksi Kesesuaian Lahan Pertanian,” Sistemsai, vol. 12, no. 3, pp. 726–738, 2023.

A. Delgado, M. Issaoui, M. C. Vieira, I. Saraiva de Carvalho, and A. Fardet, “Food composition databases: Does it matter to human health?,” Nutrients, vol. 13, no. 8, 2021, doi: 10.3390/nu13082816.

A. Sidauruk and A. Abdullah, “Sistem Pakar Penentuan Makanan Pendamping Air Susu Ibu Menggunakan Metode Min Max Dan Naïve Bayes,” Sistemasi, vol. 9, no. 1, p. 191, 2020, doi: 10.32520/stmsi.v9i1.587.

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” Sistemasi, vol. 10, no. 1, pp. 163–171, 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id.

Nurdin, U. M. Putri Nasution, H. A.-K. Aidilof, and B. Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,” Sistemasi, vol. 11, no. 1, p. 121, 2022, doi: 10.32520/stmsi.v11i1.1638.

V. Sahfitri, M. Nasir, and K. Kurniawan, “Implementasi Metode Fuzzy dalam Perancangan Sistem Pendukung Keputusan Pendistribusian Beras Bersubsidi,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 299–312, 2018, doi: 10.24176/simet.v9i1.1915.

I. Wahyuni, Logika Fuzzy tahani (Teori dan Implementasi). 2021.

C. Debora Mait, J. Armando Watuseke, P. David Gibrael Saerang, S. Reynaldo Joshua, and U. Sam Ratulangi, “Sistem Pendukung Keputusan Menggunakan Fuzzy Logic Tahani Untuk Penentuan Golongan Obat Sesuai Dengan,” J. Media Infotama, vol. 18, no. 2, p. 344, 2022.

M. A. Abdullah, I. Fitri, and N. D. Nathasia, “Sistem Pendukung Keputusan untuk Menentukan Hasil Bisnis Pujasera Terbaik dimasa Pandemi Covid 19 dengan Metode Fuzzy tahani dan Simple Additive Weighting (SAW) berbasis Website (Studi Kasus: Pujasera Hangout Salihara),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 1, p. 97, 2020, doi: 10.35870/jtik.v5i1.202.

R. Rahima, R. Radhiah, and M. Mahmudi, “Decision Support System Using the Application of Tahani Model Fuzzy Logic,” Transcendent J. Math. Appl., vol. 3, no. 1, pp. 20–28, 2024.

M. Yunus and M. R. T. Akbar, “Penerapan Algoritma Fuzzy tahani Untuk Rekomendasi Penerima Beasiswa Peningkatan Prestasi Akademik,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 2, pp. 114–120, 2021, doi: 10.35746/jtim.v3i2.161.

Rizaldi, D. Anggraeni, A. Z. Syah, A. Kholiq, and R. T. A. Agus, “Decision Support System Using Fuzzy Logic Method of Tahani Model for Student Selection,” J. Phys. Conf. Ser., vol. 1783, no. 1, 2021, doi: 10.1088/1742-6596/1783/1/012011.

S. J. Susilo, S. Supatman, and S. Supatman, “Sistem Pendukung Keputusan Penentuan Status Gizi Balita Dengan Metode Fuzzy tahani (Menggunakan Standar Antropometri Anak),” J. Inf. J. Penelit. dan Pengabdi. Masy., vol. 7, no. 1, pp. 1–7, 2021, doi: 10.46808/informa.v7i1.192.




DOI: https://doi.org/10.32520/stmsi.v13i5.3644

Article Metrics

Abstract view : 31 times
PDF - 11 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.