Sales Data Visualization to Determine Business Insight Using Metabase in a Global Retail Company

Fandy Setyo Utomo, Zuhriyatul Lubna

Abstract


In the era of dynamic business globalization, sales data analysis and visualization are key to strategic decision making. The application of Metabase as the main tool for visualization and analysis of sales data in the context of global retail companies, especially in the online sales sector. XYZ Company became the subject of research with complex challenges in managing extensive and diverse sales data. Metabase was adopted as a solution to deal with this complexity, enabling the company to gain deep insights into sales trends, consumer preferences, and hidden growth opportunities. Data visualization, through Metabase, plays a key role in transforming complex information into easy-to-understand visual representations, helping analysts and business stakeholders spot important patterns and trends. Research results reveal patterns of concurrent product purchases, providing opportunities to increase sales through promotions or product bundling. The identification of product categories that customers are interested in within a single transaction provides important insights for stock management and marketing strategies. Analysis of customer gender preferences opens up opportunities to direct more specific marketing strategies, focusing on the majority of a particular gender. The resulting recommendations include increased promotion or bundling of frequently purchased products together, as well as implementation of more focused marketing strategies based on product category preferences and customer gender. This article aims to contribute to the scientific literature on the practical application of data visualization in the context of sales analysis, with a focus on developing effective business decisions and marketing strategies.

Full Text:

PDF

References


S. N. Zahra and P. E. P. Utomo, “Visualisasi Data Penjualan Barang Retail di Seluruh Dunia Menggunakan Tableau,” J. Nas. Ilmu Komput., vol. 4, no. 3, pp. 12–21, 2023, doi: 10.47747/jurnalnik.v4i3.1217.

R. Rafid Adityo, “Pengembangan Aplikasi Qiscus Meet Menggunakan Jitsi Open Source Framework,” 2022.

D. Triyanto, M. Sholeh, F. H.-K. K. I. I. dan, and undefined 2023, “Implementasi Business Intelligence Menggunakan Tableau Untuk Visualisasi Data Dampak Bencana Banjir di Indonesia,” Djournals.Com, vol. 3, no. 6, pp. 586–594, 2023, doi: 10.30865/klik.v3i6.769.

T. Purwani, A. Wahyuni, A. P. Wicaksono, H. D. Charunia, J. Tengah, and P. Skateboard, “DASHBOARD UNTUK VISUALISASI DATA PENJUALAN BARANG PADA TOKO PUPPETS SKATEBOARD SEMARANG pengelolaan data adalah Tableau . Penelitian yang dilakukan oleh Patrick Setiawan ( Patrick Setiawan ,”.

K. Gudang, U. D. Salim, T. Aristi, S. Muharni, and A. Perdana, “Pemanfaatan Google Data Studio Untuk Visualisasi Data Bagi,” vol. 2, no. 2, pp. 67–72, 2021.

D. Naista and M. S. Hasibuan, “Visualisasi Data Hasil Uji Kompetensi Jurusan Rekayasa Perangkat Lunak SMK Negeri 3 Metro Oleh Dinas Perindustrian dan Perdagangan Provinsi Lampung 2021,” pp. 115–122, 2022.

J. Prima et al., “ANALISIS BIG DATA DENGAN METODE EXPLORATORY DATA ANALYSIS ( EDA ) DAN METODE VISUALISASI MENGGUNAKAN JUPYTER NOTEBOOK,” vol. 4, no. 2, pp. 2–6, 2021.

B. All Habsy, N. Mufidha, C. Shelomita, I. Rahayu, and M. Ilham Muckorobin, “INDONESIAN JOURNAL OF EDUCATIONAL COUNSELING Filsafat Dasar dalam Konseling Psikoanalisis : Studi Literatur A rt icle H ist o ry A B ST RA CT,” Indones. J. Educ. Couns., vol. 7, no. 2, pp. 189–199, 2023, doi: 10.30653/001.202372.266.

H. Nuraliza, O. N. Pratiwi, and F. Hamami, “Analisis Sentimen IMBd Film Review Dataset Menggunakan Support Vector Machine (SVM) dan Seleksi Feature Importance,” J. Mirai Manaj., vol. 7, no. 1, pp. 1–17, 2022.

N. K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clustering,” Pros. Semin. Nas. Teknol. dan Sains, vol. 1, pp. 200–205, 2022, [Online]. Available: https://jurnal.dharmawangsa.ac.id/index.php/djtechno/article/view/966/867

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

D. Subuh and W. Yasman, “Implementasi Data Warehouse Dan Penerapannya Pada Toko Magnifique Clothes Dengan Menggunakan Tools Pentaho,” Semin. Nas. Inov. dan Apl. Teknol. di Ind., pp. 29–36, 2019.

Y. Suhanda, I. Kurniati, and S. Norma, “Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik,” J. Teknol. Inform. dan Komput., vol. 6, no. 2, pp. 12–20, 2020, doi: 10.37012/jtik.v6i2.299.

B. H. Assyafah and T. D. Yulianti, “Analisis Dataset menggunakan Sentiment Analysis (Studi Kasus Pada Tripadvisor),” J. Strateg., vol. 3, no. November, pp. 320–331, 2021, [Online]. Available: https://www.kaggle.com/andrewmvd/trip-advisor-hotel-reviews

A. Fahri and Y. Ramdhani, “Visualisasi Data dan Penerapan Machine Learning Menggunakan Decision Tree Untuk Keputusan Layanan Kesehatan COVID-19,” J. Tekno Kompak, vol. 17, no. 2, pp. 50–60, 2022, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/2438%0Ahttps://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/download/2438/1257




DOI: https://doi.org/10.32520/stmsi.v13i4.3870

Article Metrics

Abstract view : 484 times
PDF - 195 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.