Rainfall Prediction based on Historical Weather Data using Naive Bayes Classification Model in Southeast Sulawesi
Abstract
The aim of this study is to enhance our understanding of weather behavior in Southeast Sulawesi and provide a foundation for developing more advanced and region-specific weather prediction methods. The data used in this research consists of historical weather records obtained from the official BMKG (Meteorology, Climatology, and Geophysics Agency) website, containing features that significantly contribute to rainfall prediction. The method employed in this study is the Naive Bayes classification model, which involves several stages including data collection, pre-processing, and preparation for the modeling phase, ultimately generating rainfall prediction outputs. The results of the study yielded a rainfall prediction accuracy of 74.66%. For the rainfall class (0.0), the model achieved a precision of 82%, recall of 66%, and F1-score of 73%. Meanwhile, for the rainfall class (1.0), the model achieved a precision of 69%, recall of 84%, and F1-score of 76%. Despite some prediction errors, these findings indicate that the Naive Bayes method can serve as a solid foundation for the development of more sophisticated and tailored weather prediction models for the Southeast Sulawesi region.
Keywords
References
BMKG, “Data Online Pusat Database-BMKG,” https://dataonline.bmkg.go.id/home.
D. Ruhiat, “Implementasi Distribusi Peluang Gumbel untuk Analisis Data Curah Hujan Rencana,” Teorema: Teori dan Riset Matematika, Vol. 7, No. 1, p. 213, Mar. 2022, doi: 10.25157/teorema.v7i1.7137.
J. : Jurnal, I. Nurmaulida, A. S. Sunge, and A. T. Zy, “Penggunaan Naïve Bayes dalam Implementasi Prediksi Tingkat Curah Hujan,” Ilmiah Mahasiswa Pendidikan Sejarah, Vol. 8, No. 3, pp. 3149–3157, 2023, doi: 10.24815/jimps.
BPS(Badan Pusat Statistik), “Pengamatan Unsur Iklim di Statium Pengamatan Badan Meteorologi Klimatologi dan Geofisika (BMKG) di Provinsi Sulawesi Tenggara, 2020-2022,” Badan Meteorologi, Klimatologi, dan Geofisika/ Meteorology, Climatology, and Geophysics Agency.
Siliayani, L., Iqbal Agis Junizar, Uyu Nuraeni, Edi Tohidi, & Irfan Ali, “Penerapan Algoritma Naive Bayes untuk mengetahui Kepuasan Mahasiswa terhadap Layanan Administrasi Keuangan,” KOPERTIP : Jurnal Ilmiah Manajemen Informatika Dan Komputer, Vol. 4, No. 3, pp. 72–79, 2020. doi: https://doi.org/10.32485/kopertip.v4i3.122.
P. Citra Digital untuk Mendeteksi Retakan pada Bangunan menggunakan Algoritma Naïve Bayes Studi Kasus, W. Siti Nurul Hassanah, Y. Puji Lestari, and R. Adi Saputra, “Digital Image Processing to Detect Cracks in Buildings using Naïve Bayes Algorithm (Case Study: Faculty of Engineering, Halu Oleo University),” Jurnal Informatika dan Teknologi Informasi, Vol. 20, No. 1, pp. 1–14, 2023, doi: 10.31515/telematika.v20i1.8925.
N. Kamal and Y. Ramdhani, “Optimasi Algoritma Neural Network berbasis Fitur Seleksi menggunakan Algoritma Genetika untuk Prediksi Curah Hujan,” Vol. 4, No. 2, 2023. Available: https://eprosiding.ars.ac.id/index.php/pti/article/view/1062.
A. R. Zulfikri, W. Andriani, P. Studi Teknik Informatika, and S. Tinggi Manajemen Informatika, “Tinjauan Pustaka Sistematis: Penerapan Metode Naives Bayes untuk Klasifikasi dalam Dataset Cuaca,” Journal of Practical Computer Science, Vol. 2, No. 2, 2022. doi: https://doi.org/10.37366/jpcs.v2i2.2101.
F. Fauzi, W. Setiayani, T. W. Utami, E. Yulianto, and I. W. Harmoko, “Comparison of Random Forest and Naïve Bayes Classifier Methods in Sentiment Analysis on Climate Change Issue,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, Vol. 17, No. 3, pp. 1439–1448, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1439-1448.
Topan Yuniarto, “Lembaga Badan Meteorologi, Klimatologi, dan Geofisika,” https://kompaspedia.kompas.id/baca/profil/lembaga/badan-meteorologi-klimatologi-dan-geofisika.
E. Etriyani, D. Syamsuar, and Y. Kunang Novaria, “Implementasi Data Mining menggunakan Algoritme Naive Bayes Classifier dan C4.5 untuk Memprediksi Kelulusan Mahasiswa,” Telematika, Vol. 13, No. 1, pp. 56–67, Feb. 2020, doi: 10.35671/telematika.v13i1.881.
U. Prediksi, P. Bantuan, J. Kesehatan, N. Attamami, A. Triayudi, and R. T. Aldisa, “Analisis Performa Algoritma Klasifikasi Naive Bayes dan C4.5 Teknologi Komunukasi dan Indormatika,” Vol. 7, No. 2, 2023, doi: 10.35870/jti.
P. Anastasia Gatto, R. Maulana Awangga, and R. Andarsyah, “Diagnosis Penyakit Demam Berdarah menggunakan Naïve Bayes,” 2023. Vol.17, No. 3, pp. 1676-1681. doi: https://doi.org/10.36040/jati.v7i3.6891.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Vol. 5, No. 2, 2021, doi: https://doi.org/10.30871/jaic.v5i2.3200.
M. Rangga, A. Nasution, and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” Jurnal Informatika, Vol. 6, No. 2, pp. 212–218, 2019, doi: https://doi.org/10.31294/ji.v6i2.5129.
DOI: https://doi.org/10.32520/stmsi.v14i5.3882
Article Metrics
Abstract view : 8 timesRefbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.