Texture Features of Aglaonema Leaves with Local Binary Pattern Code

Agung Tjahjo Nugroho, Yuda Nursulistyono, Bowo Eko Cahyono, Agus Subekti

Abstract


The Aglaonema type and quality is difficult to identify due to leaf pattern variety. For this reason, a technique is developed to classify Aglaonema types from leaf images. The Aglaonema is identified using the Local Binary Pattern (LBP) technique. The LBP recognizes objects in the form of pixel neighbor patterns in binary code, which is sensitive to the radius (R) and the number of neighbors (P) pixels. In this article we will study the appropriate radius and number of neighbors so that the LBP code becomes an accurate abject texture attribute. Experimentally, R is varied from 1 to 5 while P is varied from 4 to 24 pixels. Two types of Aglaonema with two varieties taken from each type were used to test the accuracy of the LBP code. The accuracy of the classification results is carried out with the help of K-Nearest Neighbors (KNN). The results show that the greater the number of neighbors in determining the LBP code, the more accurate the classification results. Neighbors with a total of 18 have a stable accuracy reaching a total of 79%. Increasing the number of neighbors does not significantly affect accuracy. The neighbor radius affects the batik type of Aglaonema, the wider the neighbor area, the accuracy increases up to 84%, but for the Lipstick type, the best accuracy is obtained when R=3. By choosing the right R and P, the types of Aglaonema batik and Lipstick can be differentiated well.

Full Text:

PDF

References


Leman, Aglonema, Tanaman Pembawa Keberuntungan. Jakarta: Penebar Swadya, 2006.

F. R. Alifia, S. Sukarsa, and W. Herawati, “Keanekaragaman Aglaonema di Kecamatan Temanggung, Kabupaten Temanggung, Jawa Tengah,” BioEksakta : Jurnal Ilmiah Biologi Unsoed, vol. 5, no. 1, 2023, doi: 10.20884/1.bioe.2023.5.1.4734.

N. Syahidan, S. Rati, S. Lubis, and N. Fadillah, “Klasifikasi Tanaman Aglaonema Menggunakan Fitur Ekstraksi Gray Level Co-Occurrence Matrix Dan K-Nearest Neighbor,” J-ICOM - Jurnal Informatika dan Teknologi Komputer, vol. 1, no. 2, pp. 58–63, Nov. 2020, doi: 10.33059/j-icom.v1i2.2770.

Y. Purna Irawan and Indah Susilawati, “Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN),” Journal Of Information System And Artificial Intelligence, vol. 2, no. 2, 2022, doi: 10.26486/jisai.v2i2.57.

Y. Mulyani, D. Septiangraini, M. A. Muhammad, and G. F. Nama, “Comparison Study of Convolutional Neural Network Architecture in Aglaonema Classification,” International Journal of Electronics and Communications Systems, vol. 2, no. 2, 2022, doi: 10.24042/ijecs.v2i2.13694.

A. Pratondo and A. Novianty, “Classification of Aglaonema Using Machine Learning,” in Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, 2022. doi: 10.1109/CICN56167.2022.10008261.

I. M. Hassoon, “Shape feature extraction techniques for fruits: A review,” Iraqi Journal of Science, vol. 62, no. 7. University of Baghdad-College of Science, pp. 2425–2430, Jul. 31, 2021. doi: 10.24996/ijs.2021.62.7.31.

V. K. Shrivastava and M. K. Pradhan, “Rice plant disease classification using color features: a machine learning paradigm,” Journal of Plant Pathology, vol. 103, no. 1, pp. 17–26, Feb. 2021, doi: 10.1007/s42161-020-00683-3.

D. Puri, A. Kumar, J. Virmani, and Kriti, “Classification of leaves of medicinal plants using laws’ texture features,” International Journal of Information Technology (Singapore), vol. 14, no. 2, pp. 931–942, Mar. 2022, doi: 10.1007/s41870-019-00353-3.

C. Yang, “Plant leaf recognition by integrating shape and texture features,” Pattern Recognit, vol. 112, Apr. 2021, doi: 10.1016/j.patcog.2020.107809.

N. Ahmad, H. M. S. Asif, G. Saleem, M. U. Younus, S. Anwar, and M. R. Anjum, “Leaf Image-Based Plant Disease Identification Using Color and Texture Features,” Wirel Pers Commun, vol. 121, no. 2, pp. 1139–1168, Nov. 2021, doi: 10.1007/s11277-021-09054-2.

M. Keivani, J. Mazloum, E. Sedaghatfar, and M. B. Tavakoli, “Automated analysis of leaf shape, texture, and color features for plant classification,” Traitement du Signal, vol. 37, no. 1, pp. 17–28, 2020, doi: 10.18280/ts.370103.

D. Rahadiyan, S. Hartati, Wahyono, and A. P. Nugroho, “Feature aggregation for nutrient deficiency identification in chili based on machine learning,” Artificial Intelligence in Agriculture, vol. 8, 2023, doi: 10.1016/j.aiia.2023.04.001.

A. Zalvadila, “Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, 2023, doi: 10.30591/jpit.v8i3.5341.

R. Cristin, B. S. Kumar, C. Priya, and K. Karthick, “Deep neural network based Rider-Cuckoo Search Algorithm for plant disease detection,” Artif Intell Rev, vol. 53, no. 7, 2020, doi: 10.1007/s10462-020-09813-w.

Y. Yohannes, M. R. Pribadi, and L. Chandra, “Klasifikasi Jenis Buah dan Sayuran Menggunakan SVM Dengan Fitur Saliency-HOG dan Color Moments,” ELKHA, vol. 12, no. 2, 2020, doi: 10.26418/elkha.v12i2.42160.

Nugroho Agung Tjahjo, Wulandari Yustisi, and Cahyono Bowo Eko, “Klasifikasi Down Syndrome Menggunakan Tekstur Lbp Dengan Tiga Variasi Distance Classifiers,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 7, no. 1, 2022.

L. Shi, X. Wang, and Y. Shen, “Research on 3D face recognition method based on LBP and SVM,” Optik (Stuttg), vol. 220, 2020, doi: 10.1016/j.ijleo.2020.165157.

B. ZHAI and Z. LI, “Face Recognition Based on Fusion Feature of LBP and PCA with KNN,” DEStech Transactions on Computer Science and Engineering, no. cmsam, 2018, doi: 10.12783/dtcse/cmsam2018/26592.

D. Q. Zeebaree, A. M. Abdulazeez, D. A. Zebari, H. Haron, and H. N. A. Hamed, “Multi-level fusion in ultrasound for cancer detection based on uniform LBP features,” Computers, Materials and Continua, vol. 66, no. 3, 2020, doi: 10.32604/cmc.2021.013314.

B. Tüű-Szabó, G. Kovács, P. Földesi, S. Nagy, and L. T. Kóczy, “Local Binary Pattern-Based Fingerprint Matching,” 2022. doi: 10.1007/978-3-030-74970-5_21.

A. Novitasari, E. P. Purwandari, and F. F. Coastera, “Identifikasi Citra Daun Tanaman Jeruk Dengan Local Binary Pattern Dan Moment Invariant,” Jurnal Informatika dan Komputer, vol. 3, no. 2, 2018.

C. A. Sari and E. H. Rachmawanto, “Fitur Esktraksi LBP dan Naive Bayes dalam Klasifikasi Jenis Pepaya Berdasarkan Citra Daun,” Jurnal Masyarakat Informatika, vol. 12, no. 2, 2021, doi: 10.14710/jmasif.12.2.42222.

S. Lan, J. Li, S. Hu, H. Fan, and Z. Pan, “A neighbourhood feature-based local binary pattern for texture classification,” Visual Computer, May 2023, doi: 10.1007/s00371-023-03041-3.

O. C. Yurdakul, M. S. P. Subathra, and S. T. George, “Detection of Parkinson’s Disease from gait using Neighborhood Representation Local Binary Patterns,” Biomed Signal Process Control, vol. 62, Sep. 2020, doi: 10.1016/j.bspc.2020.102070.

B. Smolka and K. Nurzynska, “Power LBP: A novel texture operator for smiling and neutral facial display classification,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 1555–1564. doi: 10.1016/j.procs.2015.05.350.

S. Hu, J. Li, H. Fan, S. Lan, and Z. Pan, “Scale and pattern adaptive local binary pattern for texture classification[Formula presented],” Expert Syst Appl, vol. 240, Apr. 2024, doi: 10.1016/j.eswa.2023.122403.

D. Liu, S. Wang, D. Huang, G. Deng, F. Zeng, and H. Chen, “Medical image classification using spatial adjacent histogram based on adaptive local binary patterns,” Comput Biol Med, vol. 72, pp. 185–200, May 2016, doi: 10.1016/j.compbiomed.2016.03.010.

I. Al Saidi, M. Rziza, and J. Debayle, “A Novel Texture Descriptor: Circular Parts Local Binary Pattern,” Image Analysis and Stereology, vol. 40, no. 2, pp. 105–114, 2021, doi: 10.5566/ias.2580.

Y. Mulyani, D. Septiangraini, M. A. Muhammad, and G. F. Nama, “Comparison Study of Convolutional Neural Network Architecture in Aglaonema Classification,” International Journal of Electronics and Communications Systems, vol. 2, no. 2, pp. 75–83, Dec. 2022, doi: 10.24042/ijecs.v2i2.13694.

T. Ojala, M. Pietikäinen, S. Member, IEEE, and T. Mäenpaeää, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans Pattern Anal Mach Intell, vol. 24, no. 7, pp. 971–987, 2002.

G. Saleem, M. Akhtar, N. Ahmed, and W. S. Qureshi, “Automated analysis of visual leaf shape features for plant classification,” Comput Electron Agric, vol. 157, 2019, doi: 10.1016/j.compag.2018.12.038.

J. Khan, A. S. Malik, N. Kamel, S. C. Das, and A. M. Affandi, “Effect of color feature normalization on segmentation of color images,” in International Conference on Intelligent and Advanced Systems, ICIAS 2016, 2017. doi: 10.1109/ICIAS.2016.7824099.

B. S. Anami, N. M. Naveen, and P. Surendra, “Automated Paddy Variety Recognition from Color-Related Plant Agro-Morphological Characteristics,” International Journal of Image, Graphics and Signal Processing, vol. 11, no. 1, 2019, doi: 10.5815/ijigsp.2019.01.02.

J. Su, M. Wang, Z. Wu, and Q. Chen, “Fast Plant Leaf Recognition Using Improved Multiscale Triangle Representation and KNN for Optimization,” IEEE Access, vol. 8, pp. 208753–208766, 2020, doi: 10.1109/ACCESS.2020.3037649.

A. Çelik, “Improving Iris Dataset Classification Prediction Achievement By Using Optimum k Value of kNN Algorithm,” Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, vol. 3, no. 2, pp. 23–30, May 2022, doi: 10.53608/estudambilisim.1071335.

J. Li, J. Zhang, J. Zhang, and S. Zhang, “Quantum KNN Classification With K Value Selection and Neighbor Selection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, May 2023, doi: 10.1109/TCAD.2023.3345251.

S. Zhang and J. Li, “KNN Classification With One-Step Computation,” IEEE Trans Knowl Data Eng, vol. 35, no. 3, 2023, doi: 10.1109/TKDE.2021.3119140.

I. Al Saidi, M. Rziza, and J. Debayle, “A Novel Texture Descriptor: Circular Parts Local Binary Pattern,” Image Analysis and Stereology, vol. 40, no. 2, 2021, doi: 10.5566/ias.2580.

R. Tekin, Ö. F. Ertuğrul, and Y. Kaya, “New local binary pattern approaches based on color channels in texture classification,” Multimed Tools Appl, vol. 79, no. 43–44, pp. 32541–32561, Nov. 2020, doi: 10.1007/s11042-020-09698-5.

M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of Interest Regions with Center-Symmetric Local Binary Patterns,” 2006. doi: 10.1007/11949619_6.

Y. Yang, F. Duan, J. Jiang, L. Ma, and H. Zheng, “Robust method for interest region description based on local intensity binary pattern,” J Electron Imaging, vol. 26, no. 04, 2017, doi: 10.1117/1.jei.26.4.043025.

R. Tekin, Ö. F. Ertuğrul, and Y. Kaya, “New local binary pattern approaches based on color channels in texture classification,” Multimed Tools Appl, vol. 79, no. 43–44, 2020, doi: 10.1007/s11042-020-09698-5.




DOI: https://doi.org/10.32520/stmsi.v13i4.4180

Article Metrics

Abstract view : 218 times
PDF - 63 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.