A Comparison of K-Means and Fuzzy C-Means Clustering Algorithms for Clustering the Spread of Tuberculosis (TB) in the Lungs

Faradila Ramadani, M. Afdal, Mustakim Mustakim, Rice Novita

Abstract


Tuberculosis (TB) is an airborne infectious disease that affects people of all ages, including infants, children, teenagers and the elderly. This disease is prevalent in different areas of Indragiri Hilir Regency, so it is important to identify and group the areas that are the focus of its spread. The purpose of this study is to help hospitals organize training in areas where tuberculosis is common. This study uses a data mining method with grouping techniques of K-Means and Fuzzy C-Means algorithms based on patient data from Puri Husada Tembilahan Hospital from 2020 to 2023. After several experiments, the results were evaluated with DBI, which showed that K- Means gave the best validity with a value of 0.9146. Which shows that the areas with high risk of TB are Tembilahans aged 55-64 who have been diagnosed with complicated TB. This method was then applied to the TB group information system of Puri Husada Tembilahan District Hospital in the hope that it could help the hospital reduce the spread of the disease in the affected area.Keywords: DBI, fuzzy c-means, clustering, k-means, tuberculosis.

Full Text:

PDF

References


B. Yanti, “Penyuluhan Pencegahan Penyakit Tuberkulosis (TBC) Era New Normal,” Martabe J. Pengabdi. Kpd. Masy., vol. 4, no. 1, p. 325, Mar. 2021, doi: 10.31604/jpm.v4i1.325-332.

D. Andriani and S. Sukardin, “Pengetahuan dan Sikap Keluarga Dengan Pencegahan Penularan Penyakit Tuberculosis (TBC) Di Wilayah Kerja Puskesmas Penana’e Kota Bima,”

J. Ilm. Ilmu Keperawatan Indones., vol. 10, no. 03, pp. 72–80, Sep. 2020, doi: 10.33221/jiiki.v10i03.589.

A. Sejati and L. Sofiana, “Faktor-Faktor Terjadinya Tuberkulosis,” J. Kesehat. Masy., vol. 10, no. 2, p. 122, Jan. 2015, doi: 10.15294/kemas.v10i2.3372.

A. H. Mahpudin and R. Mahkota, “Faktor Lingkungan Fisik Rumah, Respon Biologis dan Kejadian TBC Paru di Indonesia,” Kesmas Natl. Public Heal. J., vol. 1, no. 4, p. 14, Feb. 2007, doi: 10.21109/kesmas.v1i4.297.

N. Nurfadilla, M. Afdal, I. Permana, and Z. Zarnelly, “Comparison of Data Mining Algorithm For Clustering Patient Data Human Infectious Diseases,” J. Tek. Inform., vol. 4, no. 5, pp. 1127–1134, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.983.

T. R. A. Ridho, M. Fakhriza, and A. Ikhwan, “Penerapan Algoritma k-Means Dalam Mengelompokkan Penyebaran Penyakit Di Kecamatan Sei Balai,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 8, no. 1, pp. 1–7, Jan. 2024, doi: 10.59697/jtik.v8i1.487.

N. D. Aina Latifa Riyana Putri, “Analisa perbandingan k-means dan fuzzy c-means dalam pengelompokan daerah penyebaran COVID-19 Indonesia,” Anal. perbandingan k-means dan fuzzy c-means dalam pengelompokan Drh. penyebaran COVID-19 Indones., vol. Vol 10 No, 2021, doi: https://doi.org/10.15294/ujm.v10i2.50433.

S. F. Octavia and M. Mustakim, “Penerapan K-Means dan Fuzzy C-Means untuk Pengelompokan Data Kasus Covid-19 di Kabupaten Indragiri Hilir,” Build. Informatics, Technol. Sci., vol. 3, no. 2, pp. 88–94, Sep. 2021, doi: 10.47065/bits.v3i2.1005.

A. Kurnia, “Perbandingan Algoritma K-Means dan Fuzzy C-Means Untuk Clustering Puskesmas Berdasarkan Gizi Balita Surabaya,” J. Process., vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.696.

I. Romli, “Penerapan Data Mining Menggunakan Algoritma k-Means untuk Klasifikasi Penyakit Ispa,” Indones. J. Bus. Intell., vol. 4, no. 1, p. 10, Jun. 2021, doi: 10.21927/ijubi.v4i1.1727.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.

R. Azhari, D. Hartama, M. R. Lubis, D. F. Nasution, and A. P. Windarto, “Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering,” J. Informatics, Electr. Electron. Eng., vol. 3, no. 2, pp. 221–235, Dec. 2023, doi: 10.47065/jieee.v3i2.1760.

D. Ariyanto, “Data Mining Menggunakan Algoritma K-Means untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut,” J. Sistim Inf. dan Teknol., pp. 13–18, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.117.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, Aug. 2021, doi: 10.33365/jtk.v15i2.1162.

Mustakim, U. R. Gurning, A. P. Pristiawati, A. Dina, Putri, and Nabillah, “Pengelompokan Data Loyalitas Pelanggan Model RFM pada Produk Ms Glow Dan Scarlett dengan Algoritma Fuzzy C-Means,” Semin. Nas. Teknol. Informasi, Komun. dan Ind. Fak. Sains dan Teknol. UIN Sultan Syarif Kasim Riau, [Online]. Available: https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/19205/8332

A. Pramudya, I. Maulana, and R. Mayasari, “Pengelompokan Hasil Belajar Siswa SDN Tunas Jaya Dengan Algoritma k-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3960–3967, Jan. 2024, doi: 10.36040/jati.v7i6.7970.

B. A. Yudano, U. Indahyanti, and U. K. Nisak, “Pemanfaatan Data Rekam Medis dalam Menentukan Cluster Penyakit Melalui Data Mining di RS Aisyiyah Siti Fatimah Tulangan Sidoarjo,” Care J., vol. 2, no. 1, pp. 14–23, Dec. 2022, doi: 10.35584/carejournal.v2i1.98.

Y. P. Sari, A. Primajaya, and A. S. Y. Irawan, “Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang,” INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, p. 229, Nov. 2020, doi: 10.35314/isi.v5i2.1457.

L. Dodo, N. S. Fatonah, G. Firmansyah, and H. Akbar, “Analysis of Tuberculosis Disease Case Growth From Medical Record Data, Viewed Through Clustering Algorithms (Case Study: Islamic Hospital Bogor),” J. Indones. Sos. Sains, vol. 4, no. 09, pp. 915–927, Sep. 2023, doi: 10.59141/jiss.v4i09.884.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, Sep. 2017, doi: 10.25077/TEKNOSI.v3i2.2017.299-305.

N. Nurfadilla, M. Afdal, I. Permana, and Z. Zarnelly, “Comparison Of Data Mining Algorithm For Clustering Patient Data Human Infectious Diseases,” J. Tek. Inform., vol. 4, no. 5, pp. 1127–1134, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.983.

T. R. A. Ridho, M. Fakhriza, and A. Ikhwan, “Penerapan Algoritma K-Means Dalam Mengelompokkan Penyebaran Penyakit Di Kecamatan Sei Balai,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 8, no. 1, pp. 1–7, Jan. 2024, doi: 10.59697/jtik.v8i1.487.

N. D. Aina Latifa Riyana Putri, “Analisa perbandingan k-means dan fuzzy c-means dalam pengelompokan daerah penyebaran COVID-19 Indonesia,” Anal. perbandingan k-means dan fuzzy c-means dalam pengelompokan Drh. penyebaran COVID-19 Indones., vol. Vol 10 No, 2021, doi: https://doi.org/10.15294/ujm.v10i2.50433.

S. F. Octavia and M. Mustakim, “Penerapan K-Means dan Fuzzy C-Means untuk Pengelompokan Data Kasus Covid-19 di Kabupaten Indragiri Hilir,” Build. Informatics, Technol. Sci., vol. 3, no. 2, pp. 88–94, Sep. 2021, doi: 10.47065/bits.v3i2.1005.

A. Kurnia, “Perbandingan Algoritma K-Means dan Fuzzy C-Means Untuk Clustering Puskesmas Berdasarkan Gizi Balita Surabaya,” J. Process., vol. 18, no. 1, Apr. 2023, doi: 10.33998/processor.2023.18.1.696.

I. Romli, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Klasifikasi Penyakit Ispa,” Indones. J. Bus. Intell., vol. 4, no. 1, p. 10, Jun. 2021, doi: 10.21927/ijubi.v4i1.1727.

H. N. Afiah and Murniati, “Bersihan Jalan Napas Pada An.K Dengan Diagnosa Medis Tuberculosis Paru Di Ruang Aster RSUD Prof. Dr. Margono Soekarjo.” doi: https://doi.org/10.47492/jip.v4i6.2836.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.

Z. A. Zulfa Nabila, Auliya Rahman Isnain, Permata Permata, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means”, doi: https://doi.org/10.33365/jtsi.v2i2.868.

R. Azhari, D. Hartama, M. R. Lubis, D. F. Nasution, and A. P. Windarto, “Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering,” J. Informatics, Electr. Electron. Eng., vol. 3, no. 2, pp. 221–235, Dec. 2023, doi: 10.47065/jieee.v3i2.1760.

D. Ariyanto, “Data Mining Menggunakan Algoritma K-Means untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut,” J. Sistim Inf. dan Teknol., pp. 13–18, Feb. 2022, doi: 10.37034/jsisfotek.v4i1.117.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, Aug. 2021, doi: 10.33365/jtk.v15i2.1162.

D. D. Vera Herlinda, Dedi Darwis, “Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means”, doi: https://doi.org/10.33365/jtsi.v2i2.890.

R. Rustiyan and M. Mustakim, “Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, pp. 171–176, May 2018, doi: 10.25126/jtiik.201852605.

A. Pramudya, I. Maulana, and R. Mayasari, “Pengelompokan Hasil Belajar Siswa Sdn Tunas Jaya Dengan Algoritma K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3960–3967, Jan. 2024, doi: 10.36040/jati.v7i6.7970.

B. A. Yudano, U. Indahyanti, and U. K. Nisak, “Pemanfaatan Data Rekam Medis dalam Menentukan Cluster Penyakit Melalui Data Mining di Rs Aisyiyah Siti Fatimah Tulangan Sidoarjo,” Care J., vol. 2, no. 1, pp. 14–23, Dec. 2022, doi: 10.35584/carejournal.v2i1.98.

I. hariies madiistriyatno Santoso, “metodologi penelitian kuantitatif.”

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, Sep. 2017, doi: 10.25077/TEKNOSI.v3i2.2017.299-305.




DOI: https://doi.org/10.32520/stmsi.v13i5.4277

Article Metrics

Abstract view : 21 times
PDF - 19 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.