Aspect-Based Sentiment Analysis of User Reviews on the Game “Honkai: Star Rail” Using Naïve Bayes Classifier

Hisyam Agus Setiawan, Herman Yuliansyah

Abstract


Game is a form of entertainment that is often used to refresh the mind from the fatigue of daily activities and routines. Honkai: Star Rail is a popular turn-based game from Hoyoverse available on Google Play Store. Several studies have proposed Sentiment Analysis with Naïve Bayes classification method. However, not many have identified the reviews of a game to the extent of identifying on its aspects. In aspect-based sentiment analysis, text is analyzed to identify various attributes or components, then the relevant sentiment (positive, negative, or neutral) for each of these attributes is determined. This research aims to analyze aspect-based sentiment using the Naïve Bayes Classifier method, as well as categorize sentiment into positive and negative, and classify reviews into certain aspects. The results obtained after 5-fold iteration obtained the best average accuracy of 79%, The evaluation results show that it is necessary to tune the model using Grid Search Hyperparameter Tuning. Optimization of smoothing parameters with alpha = 0.1 proved effective in improving model performance with the highest weighted average accuracy of 93%. The evaluation results show that Grid Search Hyperparameter Tuning optimization gives better performance to the Naive Bayes algorithm model in multi-label classification.

Full Text:

PDF

References


Y. Firmansyah, R. Kurniawan, and Y. A. Wijaya, “Analisis Data Sentimen Pemain Game Role-Playing Game (RPG) Honkai Star Rail dengan Algoritma Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 127–135, 2024, doi: http://dx.doi.org/10.36499/jinrpl.v6i1.10243.

Z. Fitra Ramadhan and A. Benny Mutiara, “Sentiment Analysis of Honkai: Star Rail Indonesian Language Reviews on Google Play Store Using Bidirectional Encoder Representations from Transformers Method,” Int. J. Eng. Sci. Inf. Technol., vol. 3, no. 3, pp. 1–6, 2023, doi: 10.52088/ijesty.v3i3.462.

E. Elinda, H. Yuliansyah, and M. I. A. Latiffi, “Sentiment Analysis of the Sheikh Zayed Grand Mosque’s Visitor Reviews on Google Maps Using the VADER Method,” Int. J. Adv. Data Inf. Syst., vol. 5, no. 1, pp. 71–84, Apr. 2024, doi: 10.59395/ijadis.v5i1.1320.

H. Yuliansyah, S. A. Mulasari, S. Sulistyawati, F. A. Ghozali, and B. Sudarsono, “Sentiment Analysis of the Waste Problem based on YouTube comments using VADER and Deep Translator,” J. Media Inform. Budidarma, vol. 8, no. 1, pp. 663–673, 2024, doi: 10.30865/mib.v8i1.6918.

A. Saputra and F. Noor Hasan, “Analisis Sentimen Terhadap Aplikasi Coffee Meets Bagel Dengan Algoritma Naïve Bayes Classifier,” SIBATIK J. J. Ilm. Bid. Sos. Ekon. Budaya, Teknol. dan Pendidik., vol. 2, no. 2, pp. 465–474, 2023, doi: 10.54443/sibatik.v2i2.579.

N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,” Sistemasi, vol. 10, no. 1, p. 131, 2021, doi: 10.32520/stmsi.v10i1.1118.

S. R. Yustihan, P. P. Adikara, and Indriati, “Analisis Sentimen berbasis Aspek terhadap Data Ulasan Rumah Makan menggunakan Metode Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 3, pp. 1017–1023, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

D. Eka Ratnawati, “Analisis Sentimen berbasis Aspek terhadap Data Ulasan menggunakan Metode K-Nearest Neighbor (Studi Kasus: Aplikasi Olsera POS),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 3041–3046, 2023, [Online]. Available: http://j-ptiik.ub.ac.id

M. R. Alifi, D. C. U. Lieharyani, B. P. Sudimulya, and M. R. Maulidhan, “Implementation of IndoNLU Pre-Trained Model for Aspect-Based Sentiment Analysis of Indonesian Stock News,” J. Tek. Inform., vol. 16, no. 2, pp. 151–160, 2023, doi: 10.15408/jti.v16i2.33791.

P. R. Amalia and E. Winarko, “Aspect-Based Sentiment Analysis on Indonesian Restaurant Review Using a Combination of Convolutional Neural Network and Contextualized Word Embedding,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 3, p. 285, 2021, doi: 10.22146/ijccs.67306.

T. Hartati, R. T. Sohadi, E. Tohidi, and E. Wahyudin, “Penerapan Algoritma Naive Bayes pada Analisis Sentimen Ulasan Aplikasi Whoosh – Kereta Cepat Di Google Play Store,” vol. 6, no. 1, pp. 244–249, 2024, doi: http://dx.doi.org/10.36499/jinrpl.v6i1.10307.

M. R. Firdaus, N. Rahaningsih, and R. D. Dana, “Analisis Sentimen Aplikasi Shopee di Goole Play Store Menggunakan Klasifikasi Algoritma Naïve Bayes,” vol. 6, no. 1, 2024, doi: http://dx.doi.org/10.36499/jinrpl.v6i1.10302.

W. Parasati, F. Abdurrachman Bachtiar, and N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, pp. 1090–1099, 2020, [Online]. Available: http://j-ptiik.ub.ac.id

E. S. M. Hidayat, I. Indriati, “Analisis Sentimen berbasis Aspek terhadap Ulasan Game Honkai Impact 3rd menggunakan IndoBERT,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, 2024.

H. P. A. Sormin, D. E. Ratnawati, and N. Y. Setiawan, “Analisis Sentimen Masyarakat Terhadap Layanan Ub Press Dengan Menggunakan Metode Naïve Bayes Dan Lexicon-Based Features,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 1, pp. 1–9, 2017, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13639

Muhammad Afif Raihan and Erwin Budi Setiawan, “Aspect Based Sentiment Analysis with FastText Feature Expansion and Support Vector Machine Method on Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 591–598, 2022, doi: 10.29207/resti.v6i4.4187.

D. S. Bimaputra and E. Sutoyo, “Aspect-Based Sentiment Analysis of Hotels in Bali on Tripadvisor Using BERT Algorithm,” Int. J. Adv. Data Inf. Syst., vol. 4, no. 2, pp. 29–40, 2023, doi: 10.25008/ijadis.v4i2.1284.

H. Mustakim and S. Priyanta, “Aspect-Based Sentiment Analysis of KAI Access Reviews Using NBC and SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 113, 2022, doi: 10.22146/ijccs.68903.

C. A. Bahri and L. H. Suadaa, “Aspect-Based Sentiment Analysis in Bromo Tengger Semeru National Park Indonesia Based on Google Maps User Reviews,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 17, no. 1, p. 79, 2023, doi: 10.22146/ijccs.77354.

M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 14–19, 2023, doi: 10.30871/jaic.v7i1.5004.

G. H. Saputra, A. H. Wigena, and B. Sartono, “Penggunaan Support Vector Regression Dalam Pemodelan Indeks Saham Syariah Indonesia Dengan Algoritme Grid Search,” Indones. J. Stat. Its Appl., vol. 3, no. 2, pp. 148–160, 2019, doi: 10.29244/ijsa.v3i2.172.

B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Second Edition, no. May. Morgan and Claypool Publishers, 2020. doi: 10.1017/9781108639286.

Y. Widyaningsih, G. P. Arum, and K. Prawira, “Aplikasi K-Fold Cross Validation Dalam Penentuan Model Regresi Binomial Negatif Terbaik,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 315–322, 2021, doi: 10.30598/barekengvol15iss2pp315-322.

A. Erfina and R. A. Lestari, “Sentiment Analysis of Electric Vehicles using the Naïve Bayes Algorithm,” Sistemasi, vol. 12, no. 1, p. 178, 2023, doi: 10.32520/stmsi.v12i1.2417.




DOI: https://doi.org/10.32520/stmsi.v13i5.4343

Article Metrics

Abstract view : 41 times
PDF - 85 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.