Face Detection Dengan Model Arsitektur VGG 19 Pada Metode Convolutional Neural Network

Adeyuni Zada Pramuditha, Suroso Suroso, Mohammad Fadhli Fadhli

Abstract


This study develops a facial emotion detection model using the VGG-19 architecture on the Convolutional Neural Network (CNN) method. The study aims to improve the accuracy of facial expression recognition in a variety of applications, including the fields of education and marketing. The dataset used consisted of 7 categories of emotions, with 80% of the training data and 20% of the testing data. The research process includes dataset collection, data pre-processing, CNN model design, and model training with epoch variations. The results showed an increase in accuracy as the number of epochs increased, with the highest accuracy reaching 69.81% in training data and 63.30% in validation data after 100 epochs. The model showed good performance in classifying "happy" emotions, but had trouble distinguishing between sad, neutral, scared, and angry emotions. The study proves CNN's effectiveness in classifying facial emotions, although there is still room for improvement, especially in distinguishing similar emotions.

Full Text:

PDF

References


Y. Achmad, R. C. Wihandika, and C. Dewi, “Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10595–10604, 2019.

A. D. W. M. Sidik et al., “Pengenalan Ekspresi Wajah Menggunakan Teknik Filter Wavelet Gabor,” Fidel. J. Tek. Elektro, vol. 3, no. 1, pp. 1–4, 2021, doi: 10.52005/fidelity.v3i1.84.

R. Yusuf and A. A. Huda, “Deteksi Emosi Wajah Menggunakan Metode Backpropagation,” J. Autom. Comput. Inf. Syst., vol. 3, no. 2, pp. 103–114, 2023, doi: 10.47134/jacis.v3i2.60.

B. C. L. Adiatma, E. Utami, and A. D. Hartanto, “Pengenalan Ekspresi Wajah Menggunakan Deep Convolutional Neural Network,” Explore, vol. 11, no. 2, p. 75, 2021, doi: 10.35200/explore.v11i2.478.

B. T. Utomo, I. Fitri, and E. Mardiani, “Penerapan Face Recognition Pada Aplikasi Akademik Online,” Inform. J. Ilmu Komput., vol. 16, no. 3, p. 195, 2020, doi: 10.52958/iftk.v16i3.2259.

T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” J. Syntax Admiration, vol. 2, no. 3, pp. 534–545, 2021, doi: 10.46799/jsa.v2i3.202.

N. Dewi and F. Ismawan, “Implementasi Deep Learning Menggunakan Cnn Untuk Sistem Pengenalan Wajah,” Fakt. Exacta, vol. 14, no. 1, p. 34, 2021, doi: 10.30998/faktorexacta.v14i1.8989.

N. Amynarto, Y. A. Sari, and R. C. Wihandika, “Pengenalan emosi berdasarkan ekpresi mikro menggunakan metode local binary pattern,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3230–3238, 2018, [Online]. Available: httpsj-ptiik.ub.ac.idindex.phpj-ptiikarticleview2594

J. Singh et al., “Real-Time Convolutional Neural Networks for Emotion and Gender Classification,” Procedia Comput. Sci., vol. 235, pp. 1429–1435, 2024, doi: 10.1016/j.procs.2024.04.134.

A. K. Dubey and V. Jain, “Automatic facial recognition using VGG16 based transfer learning model,” J. Inf. Optim. Sci., vol. 41, no. 7, pp. 1589–1596, 2020, doi: 10.1080/02522667.2020.1809126.

D. Hindarto and H. Santoso, “Plat Nomor Kendaraan dengan Convolution Neural Network,” J. Inov. Inform., vol. 6, no. 2, pp. 1–12, 2021, doi: 10.51170/jii.v6i2.202.

Habibullah Akbar, Diah Aryani, and Muhamad Bahrul Ulum, “Deteksi Banjir Area Perkotaan Berbasis Citra Digital Convolutional Neural Network (Vgg19),” J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 2, no. 3, pp. 82–91, 2022, doi: 10.55606/teknik.v2i3.798.

R. Yohannes and M. E. Al Rivan, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,” J. Algoritm., vol. 2, no. 2, pp. 133–144, 2022, doi: 10.35957/algoritme.v2i2.2363.

X. Huang, “A Hybrid Framework for Human Face Detection and Recognition in Videos,” IOP Conf. Ser. Earth Environ. Sci., vol. 252, no. 5, 2019, doi: 10.1088/1755-1315/252/5/052144.

I. Istanbul, S. Grids, and C. Congress, Icsg Istanbul 2018, no. April. 2018.




DOI: https://doi.org/10.32520/stmsi.v13i5.4399

Article Metrics

Abstract view : 22 times
PDF - 6 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.