Rainfall Prediction in Tegal Regency using ETSFormer

Zenitha Eunike Tridinatha, Kristoko Dwi Hartomo

Abstract


Weather is the atmospheric condition at a specific location and time that is variable and constantly changing. Many factors influence weather conditions, one of which is rainfall. Rainfall is a climatic parameter characterized by high variability due to climate anomalies. These anomalies make rainfall prediction very challenging. Specific factors can cause uneven distribution patterns of rainfall between different regions. The exact amount of rainfall that will occur cannot be determined precisely, but predictions or estimations can be made for future rainfall amounts. This study predicts rainfall in Tegal Regency using ETSFormer. Its aim is to provide useful information about future rainfall patterns for the community, especially in Tegal Regency, to facilitate daily activities. The results show that the ETSFormer model effectively predicts rainfall, achieving optimal results with an 8:2 data composition using univariate analysis, yielding the best MSE evaluation metric of 0.002925439039245248 and MAE of 0.036676984280347824.

Full Text:

PDF

References


M. Yusuf, A. Setyanto, and K. Aryasa, “Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression,” 2022.

J. Badriyah, A. Fariza, and T. Harsono, “Prediksi Curah Hujan Menggunakan Long Short Term Memory,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, p. 1297, Jul. 2022, doi: 10.30865/mib.v6i3.4008.

N. Made et al., “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Prediksi Curah Hujan Dasarian dengan Metode Vanilla RNN dan LSTM untuk Menentukan Awal Musim Hujan dan Kemarau”.

T. Lattifia, P. Wira Buana, N. Kadek, and D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” 2022.

R. Akbar, R. Santoso, and B. Warsito, “Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (LSTM),” Jurnal Gaussian, vol. 11, no. 4, pp. 572–579, Feb. 2023, doi: 10.14710/j.gauss.11.4.572-579.

L. Ernst, “Structured Attention Transformers on Weather Prediction,” ETH Library, 2021, doi: 10.3929/ethz-b-000483966.

G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, “ETSformer: Exponential Smoothing Transformers for Time-series Forecasting,” Feb. 2022, [Online]. Available: http://arxiv.org/abs/2202.01381

J. Baumann and O. Kramer, Wind Power Prediction with ETSformer. [Online]. Available: http://www.i6doc.com/en/.

Brando, D. Saputra, L. Hiryanto, and T. Handhayani, “Jurnal Ilmu Komputer dan Sistem Informasi Prediksi Curah Hujan Di Kabupaten Badung, Bali Menggunakan Metode Long Short-Term Memory.”

M. David Alam Carnegie and M. Devid Alam Carnegie, “Perbandingan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) Untuk Memprediksi Curah Hujan,” vol. 7, no. 3, pp. 1022–1032, 2023, doi: 10.30865/mib.v7i3.6213.

D. A. H. Panggabean, F. M. Sihombing, and N. M. Aruan, “Prediksi Tinggi Curah Hujan Dan Kecepatan Angin Berdasarkan Data Cuaca Dengan Penerapan Algoritma Artificial Neural Network (ANN),” Seminastika, vol. 3, no. 1, pp. 1–7, Nov. 2021, doi: 10.47002/seminastika.v3i1.237.

G. Muflih, Sunardi, and A. Yudhana, “Jaringan Saraf Tiruan Backpropagation Untuk Prediksi Curah Hujan Di Wilayah Kabupaten Wonosobo,” MUST: Journal of Mathematics Education, Science and Technology, vol. 4, no. 1, pp. 45–56, Jun. 2019.

M. R. Fauzi, N. Yudistira, and W. F. Mahmudy, “State-of-Health Prediction of Lithium-Ion Batteries Using Exponential Smoothing Transformer With Seasonal and Growth Embedding,” IEEE Access, vol. 12, pp. 14659–14670, 2024, doi: 10.1109/ACCESS.2024.3357736.

K. Hu, T. Hu, W. Yan, W. Dong, M. Zuo, and Q. Zhang, “Quality Grading and Prediction of Frozen Zhoushan Hairtails in China Based on ETSFormer,” Sustainability, vol. 15, no. 21, p. 15566, Nov. 2023, doi: 10.3390/su152115566.

A. A. Maulana and H. Rosalina, “Implementasi Metode Sarimax Untuk Prediksi Curah Hujan Jangka Pendek Di Pagerageung, Tasikmalaya,” Jurnal Sumber Daya Air, vol. 20, no. 1, pp. 39–50, May 2024, doi: 10.32679/jsda.v20i1.874.




DOI: https://doi.org/10.32520/stmsi.v13i5.4422

Article Metrics

Abstract view : 17 times
PDF - 2 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.